Skip to content
VuFind
    • English
    • Deutsch
    • Español
    • Français
    • Italiano
    • 日本語
    • Nederlands
    • Português
    • Português (Brasil)
    • 中文(简体)
    • 中文(繁體)
    • Türkçe
    • עברית
    • Gaeilge
    • Cymraeg
    • Ελληνικά
    • Català
    • Euskara
    • Русский
    • Čeština
    • Suomi
    • Svenska
    • polski
    • Dansk
    • slovenščina
    • اللغة العربية
    • বাংলা
    • Galego
    • Tiếng Việt
    • Hrvatski
    • हिंदी
    • Հայերէն
    • Українська
Advanced
  • AI to Improve e-Governance and...
  • Cite this
  • Text this
  • Email this
  • Print
  • Export Record
    • Export to RefWorks
    • Export to EndNoteWeb
    • Export to EndNote
  • Permanent link
AI to Improve e-Governance and Eminence of Life Kalyanathon 2020 /

AI to Improve e-Governance and Eminence of Life Kalyanathon 2020 /

Bibliographic Details
Corporate Author: SpringerLink (Online service)
Other Authors: Mukhopadhyay, Somnath (Editor), Sarkar, Sunita (Editor), Mandal, Jyotsna Kumar (Editor), Roy, Sudipta (Editor)
Summary:XII, 182 p. 118 illus., 108 illus. in color.
text
Language:English
Published: Singapore : Springer Nature Singapore : Imprint: Springer, 2023.
Edition:1st ed. 2023.
Series:Studies in Big Data, 130
Subjects:
Computational intelligence.
Artificial intelligence.
Political science.
Computational neuroscience.
Computational Intelligence.
Artificial Intelligence.
Governance and Government.
Computational Neuroscience.
Online Access:https://doi.org/10.1007/978-981-99-4677-8
Format: Electronic Book
  • Holdings
  • Description
  • Table of Contents
  • Similar Items
  • Staff View

Internet

https://doi.org/10.1007/978-981-99-4677-8

Similar Items

  • Artificial Neural Networks Methods and Applications /
    Published: (2009)
  • Biologically Inspired Cognitive Architectures 2021 Proceedings of the 12th Annual Meeting of the BICA Society /
    Published: (2022)
  • Data Intelligence and Cognitive Informatics Proceedings of ICDICI 2021 /
    Published: (2022)
  • Artificial Psychology Psychological Modeling and Testing of AI Systems /
    by: Crowder, James A., et al.
    Published: (2020)
  • Analysis and Classification of EEG Signals for Brain–Computer Interfaces
    by: Paszkiel, Szczepan
    Published: (2020)