Data-Driven Clinical Decision-Making Using Deep Learning in Imaging

التفاصيل البيبلوغرافية
مؤلف مشترك: SpringerLink (Online service)
مؤلفون آخرون: Mridha, M. F. (المحرر), Dey, Nilanjan (المحرر)
الملخص:XII, 274 p. 105 illus., 92 illus. in color.
text
اللغة:الإنجليزية
منشور في: Singapore : Springer Nature Singapore : Imprint: Springer, 2024.
الطبعة:1st ed. 2024.
سلاسل:Studies in Big Data, 152
الموضوعات:
الوصول للمادة أونلاين:https://doi.org/10.1007/978-981-97-3966-0
التنسيق: الكتروني كتاب
جدول المحتويات:
  • Improved Classification of Kidney Lesions in CT scans using CNN with Attention Layers: Achieving High Accuracy and Performance
  • Domain Adaptation in Medical Imaging: Evaluating the Effectiveness of Transfer Learning
  • Elevating Breast Cancer Research: Discovering New Frontiers with Attention-Based U-Net Architecture for Segmentation
  • Early Skin Cancer Detection in Computer Vision: Leveraging Attention-Based Deep Ensembles
  • Incorporating Residual Connections into a Multi-Channel CNN for Interpretable Lung Cancer Detection in Digital Pathology
  • Privacy Preserving Breast Cancer Risk Prediction with Mammography Images Using Federated Learning
  • Federated Learning for Scabies Recognition: A Privacy-Preserving Approach
  • An Improved Transfer Learning based Approach for the Classification of Multi-Stage HER2 Breast Cancer from Hematoxylin and Eosin Images
  • Unveiling the Unique Dermatological Signatures of Human Monkeypox, Chickenpox, and Measles through Deep Transfer Learning Model
  • Development of a Deep Learning Framework for Brain Tumors Classification Using Transfer Learning
  • Featured-based brain tumor image registration using a Fussy-clustering segmentation approach
  • Enhancing Breast Cancer Detection Systems: Augmenting and Upscaling Mammogram Images using Generative Adversarial Networks
  • A Deep Learning Approach Bone Marrow Cancer Cell Multiclass Classification using Microscopic Images
  • Detecting Skin Cancer Through the Utilization of Deep Convolutional Neural Networks and Generative Adversarial Networks.