Skip to content
VuFind
    • English
    • Deutsch
    • Español
    • Français
    • Italiano
    • 日本語
    • Nederlands
    • Português
    • Português (Brasil)
    • 中文(简体)
    • 中文(繁體)
    • Türkçe
    • עברית
    • Gaeilge
    • Cymraeg
    • Ελληνικά
    • Català
    • Euskara
    • Русский
    • Čeština
    • Suomi
    • Svenska
    • polski
    • Dansk
    • slovenščina
    • اللغة العربية
    • বাংলা
    • Galego
    • Tiếng Việt
    • Hrvatski
    • हिंदी
    • Հայերէն
    • Українська
Advanced
  • Choice Computing: Machine Lear...
  • Cite this
  • Text this
  • Email this
  • Print
  • Export Record
    • Export to RefWorks
    • Export to EndNoteWeb
    • Export to EndNote
  • Permanent link
Choice Computing: Machine Learning and Systemic Economics for Choosing

Choice Computing: Machine Learning and Systemic Economics for Choosing

Bibliographic Details
Main Author: Kulkarni, Parag (Author)
Corporate Author: SpringerLink (Online service)
Summary:XXV, 235 p. 78 illus., 76 illus. in color.
text
Language:English
Published: Singapore : Springer Nature Singapore : Imprint: Springer, 2022.
Edition:1st ed. 2022.
Series:Intelligent Systems Reference Library, 225
Subjects:
Computational intelligence.
Machine learning.
Computer science > Mathematics.
Computational Intelligence.
Machine Learning.
Mathematics of Computing.
Online Access:https://doi.org/10.1007/978-981-19-4059-0
Format: Electronic Book
  • Holdings
  • Description
  • Table of Contents
  • Similar Items
  • Staff View

Internet

https://doi.org/10.1007/978-981-19-4059-0

Similar Items

  • Machine Learning and Metaheuristics: Methods and Analysis
    Published: (2023)
  • Optimization Algorithms in Machine Learning A Meta-heuristics Perspective /
    by: Das, Debashish, et al.
    Published: (2025)
  • Optimization in Machine Learning and Applications
    Published: (2020)
  • Advances in Neural Computation, Machine Learning, and Cognitive Research VIII Selected Papers from the XXVI International Conference on Neuroinformatics, October 21-25, 2024, Moscow, Russia /
    Published: (2025)
  • A Gentle Introduction to Data, Learning, and Model Order Reduction Techniques and Twinning Methodologies /
    by: Chinesta, Francisco, et al.
    Published: (2025)