Machine Learning, Deep Learning and Computational Intelligence for Wireless Communication Proceedings of MDCWC 2020 /

Xehetasun bibliografikoak
Erakunde egilea: SpringerLink (Online service)
Beste egile batzuk: Gopi, E. S. (Argitaratzailea)
Gaia:XIX, 643 p. 387 illus., 304 illus. in color.
text
Hizkuntza:ingelesa
Argitaratua: Singapore : Springer Nature Singapore : Imprint: Springer, 2021.
Edizioa:1st ed. 2021.
Saila:Lecture Notes in Electrical Engineering, 749
Gaiak:
Sarrera elektronikoa:https://doi.org/10.1007/978-981-16-0289-4
Formatua: Baliabide elektronikoa Liburua
Aurkibidea:
  • Deep Learning to Predict the Number of Antennas in a Massive MIMO Setup based on Channel Characteristics
  • Optimal Design of Fractional Order PID Controller for AVR System using Black Widow Optimization (BWO) Algorithm
  • LSTM Network for Hotspot Prediction in Traffic Density of Cellular Network
  • Generative Adversarial Network and Reinforcement Learning to Estimate Channel Coefficients
  • Self-Interference Cancellation in Full-duplex Radios for 5G Wireless Technology using Neural Network
  • Dimensionality Reduction of KDD-99 using Self-perpetuating Algorithm
  • Energy Efficient Neigbour Discovery using Bacterial Foraging Optimization (BFO) Technique for Asynchronous Wireless Sensor Networks
  • LSTM based Outlier Detection Method for WSNs
  • An Improved Swarm Optimization Algorithm based Harmonics Estimation and Optimal Switching Angle Identification
  • A Study of Ensemble Methods for Classification.