New Developments in Unsupervised Outlier Detection Algorithms and Applications /

Xehetasun bibliografikoak
Egile Nagusiak: Wang, Xiaochun (Egilea), Wang, Xiali (Egilea), Wilkes, Mitch (Egilea)
Erakunde egilea: SpringerLink (Online service)
Gaia:XXI, 277 p. 138 illus., 120 illus. in color.
text
Hizkuntza:ingelesa
Argitaratua: Singapore : Springer Nature Singapore : Imprint: Springer, 2021.
Edizioa:1st ed. 2021.
Gaiak:
Sarrera elektronikoa:https://doi.org/10.1007/978-981-15-9519-6
Formatua: Baliabide elektronikoa Liburua
Aurkibidea:
  • Overview and Contributions
  • Developments in Unsupervised Outlier Detection Research
  • A Fast Distance-Based Outlier Detection Technique Using A Divisive Hierarchical Clustering Algorithm
  • A k-Nearest Neighbour Centroid Based Outlier Detection Method
  • A Minimum Spanning Tree Clustering Inspired Outlier Detection Technique
  • A k-Nearest Neighbour Spectral Clustering Based Outlier Detection Technique
  • Enhancing Outlier Detection by Filtering Out Core Points and Border Points
  • An Effective Boundary Point Detection Algorithm via k-Nearest Neighbours Based Centroid
  • A Nearest Neighbour Classifier Based Automated On-Line Novel Visual Percept Detection Method
  • Unsupervised Fraud Detection in Environmental Time Series Data. .