Smart Meter Data Analytics Electricity Consumer Behavior Modeling, Aggregation, and Forecasting /
| Autores principales: | , , | 
|---|---|
| Autor Corporativo: | |
| Sumario: | XXI, 293 p. 141 illus., 125 illus. in color. text  | 
| Lenguaje: | inglés | 
| Publicado: | 
        Singapore :
          Springer Nature Singapore : Imprint: Springer,
    
        2020.
     | 
| Edición: | 1st ed. 2020. | 
| Materias: | |
| Acceso en línea: | https://doi.org/10.1007/978-981-15-2624-4 | 
| Formato: | Electrónico Libro | 
                Tabla de Contenidos: 
            
                  - Overview for Smart Meter Data Analytics
 - Smart Meter Data Compression Based on Load Feature Identification
 - A Combined Data-Driven Approach for Electricity Theft Detection
 - GAN-based Model for Residential Load Generation
 - Ensemble Clustering for Individual Electricity Consumption Patterns Extraction
 - Sparse and Redundant Representation-Based Partial Usage Pattern Extraction
 - Data-Driven Personalized Price Design in Retail Market Using Smart Meter Data
 - Deep Learning-Based Socio-demographic Information Identification
 - Cross-domain Feature Selection and Coding for Household Energy Behavior
 - Clustering of Electricity Consumption Behavior Dynamics Toward Big Data Applications
 - Enhancing Short-term Probabilistic Residential Load Forecasting with Quantile LSTM
 - An Ensemble Forecasting Method for the Aggregated Load With Subprofiles
 - Prospects of Future Research Issues on Smart Meter Data Analytics.