Machine Learning Approaches in Financial Analytics

Λεπτομέρειες βιβλιογραφικής εγγραφής
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Άλλοι συγγραφείς: Maglaras, Leandros A. (Επιμελητής έκδοσης), Das, Sonali (Επιμελητής έκδοσης), Tripathy, Naliniprava (Επιμελητής έκδοσης), Patnaik, Srikanta (Επιμελητής έκδοσης)
Περίληψη:XX, 483 p. 105 illus., 88 illus. in color.
text
Γλώσσα:Αγγλικά
Έκδοση: Cham : Springer Nature Switzerland : Imprint: Springer, 2024.
Έκδοση:1st ed. 2024.
Σειρά:Intelligent Systems Reference Library, 254
Θέματα:
Διαθέσιμο Online:https://doi.org/10.1007/978-3-031-61037-0
Μορφή: Ηλεκτρονική πηγή Βιβλίο
Πίνακας περιεχομένων:
  • -- Part I: Foundations.
  • Chapter 1: Introduction to Optimal Execution.
  • Part II: Tools and techniques.
  • Chapter 2: Python Stack for Design and Visualization in Financial Engineering.
  • Chapter 3: Neurodynamic approaches to cardinality-constrained portfolio optimization.
  • Chapter 4: Fully Homomorphic Encrypted Wavelet Neural Network for Privacy-Preserving Bankruptcy Prediction in Banks.
  • Chapter 5: Tools and Measurement Criteria of Ethical Finance through Computational Finance.
  • Chapter 6: Data Mining Techniques for Predicting the Non-Performing Assets (NPA) of Banks in India.
  • Chapter 7: Multiobjective optimization of mean-variance-downside-risk portfolio selection models.
  • Part III: Risk assessment and ethical considerations.
  • Chapter 8: Bankruptcy Forecasting Of Indian Manufacturing Companies Post Ibc Using Machine Learning Techniques.
  • Chapter 9: Ensemble Deep Reinforcement Learning for Financial Trading. Part IV: Real-world Applications.
  • Chapter 10: Bibliometric Analysis of Digital Financial Reporting.
  • Chapter 11: The Quest for Financing Environmental Sustainability in Emerging Nations: Can Internet Access and Financial Technology be Crucial?
  • Chapter 12: A comprehensive review of Bitcoin’s energy consumption and its environmental implications, etc.