Machine Learning and Its Application to Reacting Flows ML and Combustion /

Λεπτομέρειες βιβλιογραφικής εγγραφής
Συγγραφή απο Οργανισμό/Αρχή: SpringerLink (Online service)
Άλλοι συγγραφείς: Swaminathan, Nedunchezhian (Επιμελητής έκδοσης), Parente, Alessandro (Επιμελητής έκδοσης)
Περίληψη:XI, 346 p. 127 illus., 98 illus. in color.
text
Γλώσσα:Αγγλικά
Έκδοση: Cham : Springer International Publishing : Imprint: Springer, 2023.
Έκδοση:1st ed. 2023.
Σειρά:Lecture Notes in Energy, 44
Θέματα:
Διαθέσιμο Online:https://doi.org/10.1007/978-3-031-16248-0
Μορφή: Ηλεκτρονική πηγή Βιβλίο
Πίνακας περιεχομένων:
  • Introduction
  • ML Algorithms, Techniques and their Application to Reactive Molecular Dynamics Simulations
  • Big Data Analysis, Analytics & ML role
  • ML for SGS Turbulence (including scalar flux) Closures
  • ML for Combustion Chemistry
  • Applying CNNs to model SGS flame wrinkling in thickened flame LES (TFLES)
  • Machine Learning Strategy for Subgrid Modelling of Turbulent Combustion using Linear Eddy Mixing based Tabulation
  • MILD Combustion–Joint SGS FDF
  • Machine Learning for Principal Component Analysis & Transport
  • Super Resolution Neural Network for Turbulent non-premixed Combustion
  • ML in Thermoacoustics
  • Concluding Remarks & Outlook.