Generalized Fractional Calculus New Advancements and Applications /

書誌詳細
第一著者: Anastassiou, George A. (著者)
団体著者: SpringerLink (Online service)
要約:XV, 498 p. 1 illus.
text
言語:英語
出版事項: Cham : Springer International Publishing : Imprint: Springer, 2021.
版:1st ed. 2021.
シリーズ:Studies in Systems, Decision and Control, 305
主題:
オンライン・アクセス:https://doi.org/10.1007/978-3-030-56962-4
フォーマット: 電子媒体 図書
目次:
  • Caputo ψ-fractional Ostrowski inequalities
  • Caputo ψ-fractional Ostrowski and Gruss inequalities involving several functions
  • Weighted Caputo fractional Iyengar type inequalities
  • Generalized Canavati g-fractional Iyengar and Ostrowski inequalities
  • Generalized Canavati g-fractional Polya inequalities
  • Caputo generalized ψ-fractional integral type inequalities
  • Generalized ψ-fractional Quantitative Approximation by Sub-linear Operators
  • Generalized g–iterated fractional Quantitative Approximation by Sublinear Operators
  • Generalized g–Fractional vector Representation Formula and Bochner integral type inequalities for Banach space valued functions
  • Iterated g–Fractional vector Bochner integral Representation Formulae and inequalities for Banach space valued functions
  • Vectorial generalized g–fractional direct and iterated Quantitative Approximation by linear operators
  • Quantitative Multivariate Complex Korovkin Approximation Theory
  • M-fractional integral type inequalities
  • Principles of Stochastic Caputo Fractional Calculus with Fractional Approximation of Stochastic Processes
  • Trigonometric Caputo Fractional Approximation of Stochastic Processes
  • Trigonometric Conformable Fractional Approximation of Stochastic Processe
  • Commutative Caputo Fractional Korovkin Approximation for Stochastic Processes
  • Trigonometric Commutative Caputo Fractional Korovkin Approximation for Stochastic Processes
  • Commutative Conformable Fractional Korovkin Approximation for Stochastic Processes
  • Trigonometric Commutative Conformable Fractional Korovkin Approximation for Stochastic Processes
  • Concluding Remarks.