Nature-Inspired Computation in Data Mining and Machine Learning

Dettagli Bibliografici
Ente Autore: SpringerLink (Online service)
Altri autori: Yang, Xin-She (Redattore), He, Xing-Shi (Redattore)
Riassunto:XI, 273 p. 87 illus., 66 illus. in color.
text
Lingua:inglese
Pubblicazione: Cham : Springer International Publishing : Imprint: Springer, 2020.
Edizione:1st ed. 2020.
Serie:Studies in Computational Intelligence, 855
Soggetti:
Accesso online:https://doi.org/10.1007/978-3-030-28553-1
Natura: Elettronico Libro
Sommario:
  • Adaptive Improved Flower Pollination Algorithm for Global Optimization
  • Algorithms for Optimization and Machine Learning over Cloud
  • Implementation of Machine Learning and Data Mining to Improve Cybersecurity and Limit Vulnerabilities to Cyber Attacks
  • Comparative analysis of different classifiers on crisis-related tweets: An elaborate study
  • An Improved Extreme Learning Machine Tuning by Flower Pollination Algorithm
  • Prospects of Machine and Deep Learning in Analysis of Vital Signs for the Improvement of Healthcare Services.