Skip to content
VuFind
    • English
    • Deutsch
    • Español
    • Français
    • Italiano
    • 日本語
    • Nederlands
    • Português
    • Português (Brasil)
    • 中文(简体)
    • 中文(繁體)
    • Türkçe
    • עברית
    • Gaeilge
    • Cymraeg
    • Ελληνικά
    • Català
    • Euskara
    • Русский
    • Čeština
    • Suomi
    • Svenska
    • polski
    • Dansk
    • slovenščina
    • اللغة العربية
    • বাংলা
    • Galego
    • Tiếng Việt
    • Hrvatski
    • हिंदी
    • Հայերէն
    • Українська
Advanced
  • Cloud Computing for Geospatial...
  • Cite this
  • Text this
  • Email this
  • Print
  • Export Record
    • Export to RefWorks
    • Export to EndNoteWeb
    • Export to EndNote
  • Permanent link
Cloud Computing for Geospatial Big Data Analytics Intelligent Edge, Fog and Mist Computing /

Cloud Computing for Geospatial Big Data Analytics Intelligent Edge, Fog and Mist Computing /

Bibliographic Details
Corporate Author: SpringerLink (Online service)
Other Authors: Das, Himansu (Editor), Barik, Rabindra K. (Editor), Dubey, Harishchandra (Editor), Roy, Diptendu Sinha (Editor)
Summary:XII, 289 p. 93 illus., 73 illus. in color.
text
Language:English
Published: Cham : Springer International Publishing : Imprint: Springer, 2019.
Edition:1st ed. 2019.
Series:Studies in Big Data, 49
Subjects:
Computational intelligence.
Artificial intelligence.
Geographic information systems.
Big data.
Computational Intelligence.
Artificial Intelligence.
Geographical Information System.
Big Data.
Online Access:https://doi.org/10.1007/978-3-030-03359-0
Format: Electronic Book
  • Holdings
  • Description
  • Table of Contents
  • Similar Items
  • Staff View

Internet

https://doi.org/10.1007/978-3-030-03359-0

Similar Items

  • Digital Mapping of Soil Landscape Parameters Geospatial Analyses using Machine Learning and Geomatics /
    by: Garg, Pradeep Kumar, et al.
    Published: (2020)
  • Artificial Intelligent Methods for Handling Spatial Data Fuzzy Rulebase Systems and Gridded Data Problems /
    by: Verstraete, Jörg
    Published: (2019)
  • Modeling Fuzzy Spatiotemporal Data with XML
    by: Ma, Zongmin, et al.
    Published: (2020)
  • Semantic Kriging for Spatio-temporal Prediction
    by: Bhattacharjee, Shrutilipi, et al.
    Published: (2019)
  • Open Source Geospatial Science for Urban Studies The Value of Open Geospatial Data /
    Published: (2021)