Comparative study of monolithic, bilayer and gradient CVD diamond coatings under dry sliding against alumina

Бібліографічні деталі
Parent link:Ceramics International.— .— Amsterdam: Elsevier Science Publishing Company Inc.
Vol. 51, iss. 29, pt. B.— 2025.— P. 61338-61346
Інші автори: Gaydaychuk A. V. Alexander Valerievich, Mitulinsky A. S. Aleksandr Sergeevich, Zenkin S. P. Sergey Petrovich, Linnik S. A. Stepan Andreevich
Резюме:Title screen
Tribological performance of chemical vapor deposition (CVD) diamond coatings with different internal architectures – monolithic microcrystalline (M), nanocrystalline (N), bilayer (2L), and gradient structures (G4, G8, G12) – was evaluated under dry sliding against alumina. Gradient coatings with varied microcrystalline base thicknesses were prepared to clarify the influence of structural transitions on friction, wear, and adhesion. Coating architecture was found to play a decisive role in controlling tribological behavior. The gradient coating with the thickest microcrystalline base (G4) exhibited stable low friction and strong adhesion, whereas thinner gradients (G8, G12) and the bilayer (2L) showed unstable friction and higher wear, attributed to increased sp2 content and abrupt interfaces. The nanocrystalline coating demonstrated stable but higher friction, while the microcrystalline coating combined low wear with limited interfacial strength. Raman spectroscopy and post-test microscopy confirmed that the sp3/sp2 carbon phase balance and the presence of a continuous structural gradient govern crack propagation, debris formation, and friction stability. Overall, a graded architecture with a sufficiently thick microcrystalline base provides an effective design route for achieving mechanically robust, wear-resistant, and low-friction diamond coatings suitable for advanced tribological applications
Текстовый файл
AM_Agreement
Мова:Англійська
Опубліковано: 2025
Предмети:
Онлайн доступ:https://doi.org/10.1016/j.ceramint.2025.10.328
Формат: Електронний ресурс Частина з книги
KOHA link:https://koha.lib.tpu.ru/cgi-bin/koha/opac-detail.pl?biblionumber=684119

MARC

LEADER 00000naa0a2200000 4500
001 684119
005 20251225131939.0
090 |a 684119 
100 |a 20251225d2025 k||y0rusy50 ba 
101 0 |a eng 
102 |a NL 
135 |a drcn ---uucaa 
181 0 |a i   |b  e  
182 0 |a b 
183 0 |a cr  |2 RDAcarrier 
200 1 |a Comparative study of monolithic, bilayer and gradient CVD diamond coatings under dry sliding against alumina  |f Alexander Gaydaychuk, Alexander Mitulinsky, Sergey Zenkin, Stepan Linnik 
203 |a Текст  |b визуальный  |c электронный 
283 |a online_resource  |2 RDAcarrier 
300 |a Title screen 
320 |a References: 41 tit 
330 |a Tribological performance of chemical vapor deposition (CVD) diamond coatings with different internal architectures – monolithic microcrystalline (M), nanocrystalline (N), bilayer (2L), and gradient structures (G4, G8, G12) – was evaluated under dry sliding against alumina. Gradient coatings with varied microcrystalline base thicknesses were prepared to clarify the influence of structural transitions on friction, wear, and adhesion. Coating architecture was found to play a decisive role in controlling tribological behavior. The gradient coating with the thickest microcrystalline base (G4) exhibited stable low friction and strong adhesion, whereas thinner gradients (G8, G12) and the bilayer (2L) showed unstable friction and higher wear, attributed to increased sp2 content and abrupt interfaces. The nanocrystalline coating demonstrated stable but higher friction, while the microcrystalline coating combined low wear with limited interfacial strength. Raman spectroscopy and post-test microscopy confirmed that the sp3/sp2 carbon phase balance and the presence of a continuous structural gradient govern crack propagation, debris formation, and friction stability. Overall, a graded architecture with a sufficiently thick microcrystalline base provides an effective design route for achieving mechanically robust, wear-resistant, and low-friction diamond coatings suitable for advanced tribological applications 
336 |a Текстовый файл 
371 0 |a AM_Agreement 
461 1 |t Ceramics International  |c Amsterdam  |n Elsevier Science Publishing Company Inc. 
463 1 |t Vol. 51, iss. 29, pt. B  |v P. 61338-61346  |d 2025 
610 1 |a Gradient architecture 
610 1 |a Diamond coatings 
610 1 |a Wear resistance 
610 1 |a CoF 
610 1 |a электронный ресурс 
610 1 |a труды учёных ТПУ 
701 1 |a Gaydaychuk  |b A. V.  |c physicist  |c Postgraduate, Engineer - Researcher of Tomsk Polytechnic University  |f 1984-  |g Alexander Valerievich  |9 16724 
701 1 |a Mitulinsky  |b A. S.  |c electric power specialist  |c technician of Tomsk Polytechnic University  |f 1998-  |g Aleksandr Sergeevich  |9 22706 
701 1 |a Zenkin  |b S. P.  |c physicist  |c Researcher of Tomsk Polytechnic University  |f 1988-  |g Sergey Petrovich  |9 21447 
701 1 |a Linnik  |b S. A.  |c physicist  |c Engineer-Researcher of Tomsk Polytechnic University  |f 1985-  |g Stepan Andreevich  |9 16725 
801 0 |a RU  |b 63413507  |c 20251225 
850 |a 63413507 
856 4 |u https://doi.org/10.1016/j.ceramint.2025.10.328  |z https://doi.org/10.1016/j.ceramint.2025.10.328 
942 |c CF