Dry Reforming of Methane over Ni/WC Catalysts: Effect of Ni Content and CH4:CO2 Ratio

Bibliographic Details
Parent link:Materials.— .— Basel: MDPI AG
Vol. 18, iss. 17.— 2025.— Article number 3990, 17 p.
Other Authors: Bolatova Zh. S. Zhanar Sanatovna, Kuznetsova S. N. Svetlana Nikolaevna, Vedishcheva O. Olga, Carabineiro S. A. C. Sonia Alexandra Correia, Kolobova E. N. Ekaterina Nikolaevna, Pestryakov A. N. Aleksey Nikolaevich
Summary:Title screen
Dry reforming of methane (DRM) into synthesis gas (CO + H2) is one of the most important chemical reactions for industrial hydrogen production. It also enables the synthesis of hydrocarbons (liquid fuels) and other valuable products, providing an effective route for utilizing greenhouse gases. However, a major challenge limiting the implementation and scale-up of DRM is the high cost of stable and active noble metal-based catalysts, or the rapid deactivation of nickel- and cobalt-based catalysts due to coking and sintering of the active metal particles. In this context, the present work demonstrates that combining a highly active and inexpensive component (Ni) with tungsten carbide produces a composite material exhibiting high catalytic activity and resistance to oxidation and coking during DRM. Tungsten carbide was synthesized using a vacuum-free electric arc method, and nickel was subsequently deposited in varying amounts (1–25 wt.%) using the deposition–precipitation method with NaOH (DP). The resulting catalysts were characterized by X-ray diffraction, temperature-programmed reduction and Raman spectroscopy. Their performance was evaluated under DRM conditions, at atmospheric pressure and 800 °C, using different CH4:CO2 ratios. The most effective oxidation/(re)carbonization cycle, ensuring catalyst stability during DRM by balancing the rates of carbon formation and removal from the catalyst surface, was achieved with a nickel content of 20 wt.% and a CH4 to CO2 ratio of 0.67 in the feed gas mixture
Текстовый файл
Language:English
Published: 2025
Subjects:
Online Access:https://doi.org/10.3390/ma18173990
Format: Electronic Book Chapter
KOHA link:https://koha.lib.tpu.ru/cgi-bin/koha/opac-detail.pl?biblionumber=683054