The formation of nanocomposite In-Sn-O coatings on glass to decrease local surface damage under the impact of hypervelocity particles

Bibliographic Details
Parent link:AIP Conference Proceedings.— : AIP Publishing
Other Authors: Tursunkhanova R. Ryskul, Sergeev V. P. Viktor Petrovich, Kalashnikov M. P. Mark Petrovich, Sergeev O. V., Stuzhuk V. V., Neufeld V. V.
Summary:Title screen
Optically transparent and conductive In-Sn-O coatings deposited on glass substrates can be used as an erosion protection for the optical systems of space vehicles. The investigation of the optical properties of In-Sn-O thin films shows that the coatings possess transparency in the visible spectrum. The elemental composition and the structural and phase composition of the coatings are assessed by Energy Dispersive Spectroscopy (EDS), transmission electron microscopy (TEM) and X-ray diffraction (XRD) analysis, respectively. The results show that the In-Sn-O-based coatings (30 at.% of In, 2.4 at.% of Sn and 67.1 at.% of O) contain nanocrystalline In2O3 phase. Magnetron deposition of the InSn-O coating increases the ultimate strength, hardness and cracking resistance of the glass surface layer, which decreases the surface density of craters under the impacts of high-velocity hard microparticles
Текстовый файл
AM_Agreement
Published: 2023
Subjects:
Online Access:https://doi.org/10.1063/5.0163709
Format: Electronic Book Chapter
KOHA link:https://koha.lib.tpu.ru/cgi-bin/koha/opac-detail.pl?biblionumber=682929

Similar Items