The formation of nanocomposite In-Sn-O coatings on glass to decrease local surface damage under the impact of hypervelocity particles
| Parent link: | AIP Conference Proceedings.— : AIP Publishing |
|---|---|
| Otros Autores: | , , , , , |
| Sumario: | Title screen Optically transparent and conductive In-Sn-O coatings deposited on glass substrates can be used as an erosion protection for the optical systems of space vehicles. The investigation of the optical properties of In-Sn-O thin films shows that the coatings possess transparency in the visible spectrum. The elemental composition and the structural and phase composition of the coatings are assessed by Energy Dispersive Spectroscopy (EDS), transmission electron microscopy (TEM) and X-ray diffraction (XRD) analysis, respectively. The results show that the In-Sn-O-based coatings (30 at.% of In, 2.4 at.% of Sn and 67.1 at.% of O) contain nanocrystalline In2O3 phase. Magnetron deposition of the InSn-O coating increases the ultimate strength, hardness and cracking resistance of the glass surface layer, which decreases the surface density of craters under the impacts of high-velocity hard microparticles Текстовый файл AM_Agreement |
| Publicado: |
2023
|
| Materias: | |
| Acceso en línea: | https://doi.org/10.1063/5.0163709 |
| Formato: | Electrónico Capítulo de libro |
| KOHA link: | https://koha.lib.tpu.ru/cgi-bin/koha/opac-detail.pl?biblionumber=682929 |