Investigation of the Antibacterial Properties of Janus Micromotors Catalytic Propelled by Manganese Dioxide and Hydrogen Peroxide to Reduce Bacterial Density

Bibliographic Details
Parent link:ACS Applied Bio Materials.— .— Washington: ACS Publications
Vol. 7, iss. 10.— 2024.— P. 6529-6541
Corporate Author: National Research Tomsk Polytechnic University (570)
Other Authors: Cheng Yanfang, Liu Xiaolan, Rutkowski S. Sven, Badaraev A. D. Arsalan Dorzhievich, Kozelskaya A. I. Anna Ivanovna, Tverdokhlebov S. I. Sergei Ivanovich, Frueh J. C. Johannes Christoph
Summary:Title screen
Between 2015 and 2017, 90% of Chinese adults were reported to have periodontitis of varying degrees, highlighting the importance of novel, inexpensive, and affordable treatments for the public. The fact that more and more pathogens are becoming resistant to antibiotics further highlights this prevalence. This article addresses a novel micromotor capable of generating reactive oxygen species, as proven by a Fenton-like reaction. Such reactions allow the targeting of Gram-negative bacteria such as Escherichia coli, which are eliminated order of magnitude more effectively than by pure hydrogen peroxide, thereby addressing pathogens relevant in oral infections. The basis of the micromotors, which generate reactive oxygen species on site, reduces the likelihood of resistance developing in these types of bacteria. Catalytically reducing hydrogen peroxide in this process, these micromotors propel themselves forward. This proof of principle study paves the way for the utilization of micromotors in the field of skin disinfection utilizing hydrogen peroxide concentrations which were in previous works proven noncytotoxic
Текстовый файл
AM_Agreement
Language:English
Published: 2024
Subjects:
Online Access:https://doi.org/10.1021/acsabm.4c00690
Format: Electronic Book Chapter
KOHA link:https://koha.lib.tpu.ru/cgi-bin/koha/opac-detail.pl?biblionumber=676271