Оптимизация работы компрессорной установки с применением технологий искусственного интеллекта

Dades bibliogràfiques
Parent link:Известия Томского политехнического университета [Известия ТПУ]. Промышленная кибернетика: рецензируемый научный журнал/ Национальный исследовательский Томский политехнический университет.— .— Томск: ТПУ, 2023-.— 2949-5407
Т. 1, № 4.— 2023.— С. 28-33
Autor principal: Власов А. Е. Александр Евгеньевич
Altres autors: Лазарева Л. В. Любовь Владимировна
Sumari:В работе была рассмотрена возможность использования нейронных сетей и алгоритмов машинного обучения для оптимизации расхода топливного газа компрессорной установкой. Были исследованы зависимости предложенных данных с автоматизированной системы управления технологическим процессом компрессорной станции и их влияние на расход агрегатом топливного газа. Примененные методы корреляционного анализа и изучение технологического процесса перекачки газа позволили выделить 18 признаков, имеющих наибольшее влияние на целевой параметр, которые далее были использованы для построения имитационной модели – нейронной сети, позволяющей по входным данным предсказывать расход топливного газа. На основе модели был построен оптимизатор с применением градиентного спуска, который при установленных ограничениях входных данных находит оптимальные параметры работы компрессорной установки в заданных диапазонах, минимизирующих расход топливного газа. Разработанный алгоритм позволяет снизить расход газа единичного агрегата на 2 %
Abstract. The work examined the possibility of using neural networks and machine learning algorithms to optimize fuel gas con-sumption by a compressor unit. The authors have studied the dependences of the proposed data from the automated process con-trol system of the compressor station and their impact on fuel gas consumption of the unit. The applied methods of correlation anal-ysis and the study of the technological process of gas pumping made it possible to identify 18 features that have the greatest impact on the target parameter. These features were then used to build a simulation model –a neural network, which allows predicting fuel gas consumption based on input data. Based on the model, an optimizer was built using gradient descent, which, under established input data restrictions, finds the optimal operating parameters of the compressor unit in specified ranges that minimize fuel gas consumption. The developed algorithm allows reducing the gas consumption of a single unit by 2 %
Текстовый файл
Publicat: 2023
Matèries:
Accés en línia:http://earchive.tpu.ru/handle/11683/81929
https://doi.org/10.18799/29495407/2023/4/40
Format: Electrònic Capítol de llibre
KOHA link:https://koha.lib.tpu.ru/cgi-bin/koha/opac-detail.pl?biblionumber=675624