Enhancing predictive accuracy in environmental data analysis: a hybrid LASSO-RFR approach for climatic analysis in Siberia
Parent link: | Перспективы развития фундаментальных наук=Prospects of Fundamental Sciences Development: сборник научных трудов XXI Международной конференции студентов, аспирантов и молодых ученых, г. Томск, 23-26 апреля 2024 г./ Национальный исследовательский Томский политехнический университет ; под ред. И. А. Курзиной [и др.].— .— Томск: Изд-во ТПУ Т. 3 : Математика.— 2024.— С. 23-25 |
---|---|
Glavni avtor: | |
Drugi avtorji: | , , |
Izvleček: | Заглавие с экрана This study introduces a hybrid LASSO-RFR approach for photovoltaic energy forecasting, leveraging LASSO's feature selection with RFR's analytical strength to tackle weather-induced variability. It showcases improved forecast accuracy through simplified datasets and enhanced correlation analysis, resulting in superior model performance. With an MSE of 0.0060 and an R squared of 85.7% for Model 2, the approach outperforms LASSO-only models, marking a significant advancement in renewable energy analytics and offering a potent forecasting tool for areas with extreme weather. Текстовый файл |
Jezik: | ruščina |
Izdano: |
2024
|
Teme: | |
Online dostop: | https://earchive.tpu.ru/handle/11683/80585 |
Format: | Elektronski Book Chapter |
KOHA link: | https://koha.lib.tpu.ru/cgi-bin/koha/opac-detail.pl?biblionumber=674458 |