Biodegradable magnesium fuel-based Janus micromotors with surfactant induced motion direction reversal

Bibliographic Details
Parent link:Colloids and Surfaces B: Biointerfaces
Vol. 218.— 2022.— [112780, 8 p.]
Corporate Authors: Национальный исследовательский Томский политехнический университет Инженерная школа ядерных технологий Научно-образовательный центр Б. П. Вейнберга, Национальный исследовательский Томский политехнический университет Инженерная школа ядерных технологий Лаборатория плазменных гибридных систем
Other Authors: Zhao Zewei, Si Tieyan, Kozelskaya A. I. Anna Ivanovna, Akimchenko I. O. Igor Olegovich, Tverdokhlebov S. I. Sergei Ivanovich, Rutkowski S. Sven, Frueh J. С. Johannes Christoph
Summary:Title screen
The speed and motion directionality of bubble-propelled micromotors is dependent on bubble lifetime, bubble formation frequency and bubble stabilization. Absence and presence of bubble stabilizing agents should significantly influence speed and propulsion pattern of a micromotor, especially for fast-diffusing molecules like hydrogen. This study demonstrates a fully biodegradable Janus structured micromotor, propelled by hydrogen bubbles generated by the chemical reaction between hydrochloric acid and magnesium. Six different concentrations of hydrochloric acid and five different concentrations of the surfactant Triton X-100 were tested, which also cover the critical micelle concentration at a pH corresponding to an empty stomach. The Janus micromotor reverses its propulsion direction depending on the availability and concentration of a surfactant. Upon surfactant-free condition, the Janus micromotor is propelled by bubble cavitation, causing the micromotor to be pulled at high speed for short time intervals into the direction of the imploding bubble and thus backwards. In case of available surfactant above the critical micelle concentration, the Janus micromotor is pushed forward by the generated bubbles, which emerge at high frequency and form a bubble trail. The finding of the propulsion direction reversal effect demonstrates the importance to investigate the motion properties of artificial micromotors in a variety of different environments prior to application, especially with surfactants, since biological media often contain large amounts of surface-active components.
Режим доступа: по договору с организацией-держателем ресурса
Published: 2022
Subjects:
Online Access:https://doi.org/10.1016/j.colsurfb.2022.112780
Format: Electronic Book Chapter
KOHA link:https://koha.lib.tpu.ru/cgi-bin/koha/opac-detail.pl?biblionumber=669036