Quasiconformal mappings and Neumann eigenvalues of divergent elliptic operators

書目詳細資料
Parent link:Complex Variables and Elliptic Equations
Vol. 67, iss. 9.— 2022.— [P. 2281-2302]
主要作者: Goldshteyn V. M. Vladimir Mikhaylovich
企業作者: Национальный исследовательский Томский политехнический университет Школа базовой инженерной подготовки Отделение математики и информатики
其他作者: Pchelintsev V. A. Valery Anatoljevich, Ukhlov A. D. Aleksandr Dadar-oolovich
總結:Title screen
We study spectral properties of divergence form elliptic operators −div[A(z)∇f(z)]−div[A(z)∇f(z)] with the Neumann boundary condition in planar domains (including some fractal type domains) that satisfy to the quasihyperbolic boundary conditions. Our method is based on an interplay between quasiconformal mappings, elliptic operators and composition operators on Sobolev spaces.
語言:英语
出版: 2022
主題:
在線閱讀:https://doi.org/10.1080/17476933.2021.1921752
格式: 電子 Book Chapter
KOHA link:https://koha.lib.tpu.ru/cgi-bin/koha/opac-detail.pl?biblionumber=668605
實物特徵
總結:Title screen
We study spectral properties of divergence form elliptic operators −div[A(z)∇f(z)]−div[A(z)∇f(z)] with the Neumann boundary condition in planar domains (including some fractal type domains) that satisfy to the quasihyperbolic boundary conditions. Our method is based on an interplay between quasiconformal mappings, elliptic operators and composition operators on Sobolev spaces.
DOI:10.1080/17476933.2021.1921752