Quasiconformal mappings and Neumann eigenvalues of divergent elliptic operators

Dades bibliogràfiques
Parent link:Complex Variables and Elliptic Equations
Vol. 67, iss. 9.— 2022.— [P. 2281-2302]
Autor principal: Goldshteyn V. M. Vladimir Mikhaylovich
Autor corporatiu: Национальный исследовательский Томский политехнический университет Школа базовой инженерной подготовки Отделение математики и информатики
Altres autors: Pchelintsev V. A. Valery Anatoljevich, Ukhlov A. D. Aleksandr Dadar-oolovich
Sumari:Title screen
We study spectral properties of divergence form elliptic operators −div[A(z)∇f(z)]−div[A(z)∇f(z)] with the Neumann boundary condition in planar domains (including some fractal type domains) that satisfy to the quasihyperbolic boundary conditions. Our method is based on an interplay between quasiconformal mappings, elliptic operators and composition operators on Sobolev spaces.
Idioma:anglès
Publicat: 2022
Matèries:
Accés en línia:https://doi.org/10.1080/17476933.2021.1921752
Format: Electrònic Capítol de llibre
KOHA link:https://koha.lib.tpu.ru/cgi-bin/koha/opac-detail.pl?biblionumber=668605