Quasiconformal mappings and Neumann eigenvalues of divergent elliptic operators

Bibliographic Details
Parent link:Complex Variables and Elliptic Equations
Vol. 67, iss. 9.— 2022.— [P. 2281-2302]
Main Author: Goldshteyn V. M. Vladimir Mikhaylovich
Corporate Author: Национальный исследовательский Томский политехнический университет Школа базовой инженерной подготовки Отделение математики и информатики
Other Authors: Pchelintsev V. A. Valery Anatoljevich, Ukhlov A. D. Aleksandr Dadar-oolovich
Summary:Title screen
We study spectral properties of divergence form elliptic operators −div[A(z)∇f(z)]−div[A(z)∇f(z)] with the Neumann boundary condition in planar domains (including some fractal type domains) that satisfy to the quasihyperbolic boundary conditions. Our method is based on an interplay between quasiconformal mappings, elliptic operators and composition operators on Sobolev spaces.
Published: 2022
Subjects:
Online Access:https://doi.org/10.1080/17476933.2021.1921752
Format: Electronic Book Chapter
KOHA link:https://koha.lib.tpu.ru/cgi-bin/koha/opac-detail.pl?biblionumber=668605