Quasiconformal mappings and Neumann eigenvalues of divergent elliptic operators

Bibliografiske detaljer
Parent link:Complex Variables and Elliptic Equations
Vol. 67, iss. 9.— 2022.— [P. 2281-2302]
Hovedforfatter: Goldshteyn V. M. Vladimir Mikhaylovich
Institution som forfatter: Национальный исследовательский Томский политехнический университет Школа базовой инженерной подготовки Отделение математики и информатики
Andre forfattere: Pchelintsev V. A. Valery Anatoljevich, Ukhlov A. D. Aleksandr Dadar-oolovich
Summary:Title screen
We study spectral properties of divergence form elliptic operators −div[A(z)∇f(z)]−div[A(z)∇f(z)] with the Neumann boundary condition in planar domains (including some fractal type domains) that satisfy to the quasihyperbolic boundary conditions. Our method is based on an interplay between quasiconformal mappings, elliptic operators and composition operators on Sobolev spaces.
Sprog:engelsk
Udgivet: 2022
Fag:
Online adgang:https://doi.org/10.1080/17476933.2021.1921752
Format: Electronisk Book Chapter
KOHA link:https://koha.lib.tpu.ru/cgi-bin/koha/opac-detail.pl?biblionumber=668605