Benzimidazole-based N-heterocyclic carbene silver complexes as catalysts for the formation of carbonates from carbon dioxide and epoxides
| Parent link: | Molecular Catalysis Vol. 526.— 2022.— [112369, 12 p.] |
|---|---|
| Corporate Author: | |
| Other Authors: | , , , , , , , |
| Summary: | Title screen A series of left-to-right inequivalent 1,3-disubstituted benzimidazolium halide pro-ligands having the general formula [RBNHCCH2OxMe][X] (R = 3-Me-Bn, 3,5-Me2-Bn, 2,4,6-Me3-Bn, 2,3,5,6-Me4-Bn, 2,3,4,5,6-Me5-Bn, 3,4,5-(OMe)3-Bn, or 4-tBu-Bn; X = Cl, Br) were synthesized by the alkylation of 1-((3-methyloxetan-3-yl)methyl)benzimidazole. The corresponding Ag complexes, (RBNHCCH2OxMe)AgX, were prepared following pro-ligand addition to Ag2O. These compounds were characterized using spectroscopic techniques such as FT-IR, NMR spectroscopy, and single-crystal X-ray diffraction. The solid-state structure of (3-Me-BnBNHCCH2OxMe)AgCl revealed a linear monomer while [(2,4,6-Me3-BnBNHCCH2OxMe)AgCl]2 was found to exist as a dimer with pseudo trigonal planar geometry about each metal center. The synthesized (RBNHCCH2OxMe)AgX complexes were found to be efficient for the addition of carbon dioxide to epoxides to yield value-added cyclic carbonates at ambient pressure. Amongst the investigated complexes, the bimetallic complex [(2,4,6-Me3-BnBNHCCH2OxMe)AgCl]2 was found to be the most active for CO2 insertion, exhibiting favorable activity when compared to known NHC complexes. Режим доступа: по договору с организацией-держателем ресурса |
| Published: |
2022
|
| Subjects: | |
| Online Access: | https://doi.org/10.1016/j.mcat.2022.112369 |
| Format: | Electronic Book Chapter |
| KOHA link: | https://koha.lib.tpu.ru/cgi-bin/koha/opac-detail.pl?biblionumber=668481 |