Improving inter-plant integration of syngas production technologies by the recycling of CO2 and by-product of the Fischer-Tropsch process
Parent link: | International Journal of Hydrogen Energy Vol. 47, iss. 74.— 2022.— [P. 31755-31772] |
---|---|
Weitere Verfasser: | , , , |
Zusammenfassung: | Title screen This paper deals with the emission reduction in synthesis-gas production by better integration and increasing the energy efficiency of a high-temperature co-electrolysis unit combined with the Fischer-Tropsch process. The investigated process utilises the by-product of Fischer-Tropsch, as an energy source and carbon dioxide as a feedstock for synthesis gas production. The proposed approach is based on adjusting process streams temperatures with the further synthesis of a new heat exchangers network and optimisation of the utility system. The potential of secondary energy resources was determined using plus/minus principles and simulation of a high-temperature co-electrolysis unit. The proposed technique maximises the economic and environmental benefits of inter-unit integration. Two scenarios were considered for sharing the high-temperature co-electrolysis and the Fischer-Tropsch process. In the first scenario, by-products from the Fischer-Tropsch process were used as fuel for a high-temperature co-electrolysis. Optimisation of secondary energy sources and the synthesis of a new heat exchanger network reduce fuel consumption by 47% and electricity by 11%. An additional environmental benefit is reflected in emission reduction by 25,145 tCO2/y. The second scenario uses fossil fuel as a primary energy source. The new exchanger network for the high-temperature co-electrolysis was built for different energy sources. The use of natural gas resulted in total annual costs of the heat exchanger network to 1,388,034 USD/y, which is 1%, 14%, 116% less than for coal, fuel oil and LPG, respectively. The use of natural gas as a fuel has the lowest carbon footprint of 7288 tCO2/y. On the other hand, coal as an energy source has commensurable economic indicators that produce 2 times more CO2, which can be used as a feedstock for a high-temperature co-electrolysis. This work shows how in-depth preliminary analysis can optimise the use of primary and secondary energy resources during inter-plant integration. Режим доступа: по договору с организацией-держателем ресурса |
Sprache: | Englisch |
Veröffentlicht: |
2022
|
Schlagworte: | |
Online-Zugang: | https://doi.org/10.1016/j.ijhydene.2021.12.184 |
Format: | Elektronisch Buchkapitel |
KOHA link: | https://koha.lib.tpu.ru/cgi-bin/koha/opac-detail.pl?biblionumber=667523 |