Enhanced piezoresponse and surface electric potential of hybrid biodegradable polyhydroxybutyrate scaffolds functionalized with reduced graphene oxide for tissue engineering

Bibliographic Details
Parent link:Nano Energy
Vol. 89.— 2021.— [106473, 15 p.]
Corporate Authors: Национальный исследовательский Томский политехнический университет Исследовательская школа химических и биомедицинских технологий Научно-исследовательский центр "Физическое материаловедение и композитные материалы", Национальный исследовательский Томский политехнический университет Исследовательская школа химических и биомедицинских технологий
Other Authors: Chernozem R. V. Roman Viktorovich, Romanyuk K. N., Grubova I. Yu. Irina Yurievna, Chernozem P. V. Polina Viktorovna, Surmeneva M. A. Maria Alexandrovna, Mukhortova Yu. R. Yulia Ruslanovna, Wilhelm M., Ludwig T. Tim, Mathur S. Sanjay, Kholkin A. L. Andrei Leonidovich, Neyts E. C. Erik, Parakhonskiy B. V. Bogdan, Skirtach A. G. Andre, Surmenev R. A. Roman Anatolievich
Summary:Title screen
Piezoelectricity is considered to be one of the key functionalities in biomaterials to boost bone tissue regeneration, however, integrating biocompatibility, biodegradability and 3D structure with pronounced piezoresponse remains a material challenge. Herein, novel hybrid biocompatible 3D scaffolds based on biodegradable poly(3-hydroxybutyrate) (PHB) and reduced graphene oxide (rGO) flakes have been developed. Nanoscale insights revealed a more homogenous distribution and superior surface potential values of PHB fibers (33 ± 29 mV) with increasing rGO content up to 1.0 wt% (314 ± 31 mV). The maximum effective piezoresponse was detected at 0.7 wt% rGO content, demonstrating 2.5 and 1.7 times higher out-of-plane and in-plane values, respectively, than that for pure PHB fibers. The rGO addition led to enhanced zigzag chain formation between paired lamellae in PHB fibers. In contrast, a further increase in rGO content reduced the ?-crystal size and prevented zigzag chain conformation. A corresponding model explaining structural and molecular changes caused by rGO addition in electrospun PHB fibers is proposed. In addition, finite element analysis revealed a negligible vertical piezoresponse compared to lateral piezoresponse in uniaxially oriented PHB fibers based on ?-phase (P212121 space group). Thus, the present study demonstrates promising results for the development of biodegradable hybrid 3D scaffolds with an enhanced piezoresponse for various tissue engineering applications.
Режим доступа: по договору с организацией-держателем ресурса
Language:English
Published: 2021
Subjects:
Online Access:https://doi.org/10.1016/j.nanoen.2021.106473
Format: Electronic Book Chapter
KOHA link:https://koha.lib.tpu.ru/cgi-bin/koha/opac-detail.pl?biblionumber=667474

MARC

LEADER 00000naa0a2200000 4500
001 667474
005 20250826095132.0
035 |a (RuTPU)RU\TPU\network\38679 
090 |a 667474 
100 |a 20220329d2021 k||y0rusy50 ba 
101 0 |a eng 
102 |a NL 
135 |a drcn ---uucaa 
181 0 |a i  
182 0 |a b 
200 1 |a Enhanced piezoresponse and surface electric potential of hybrid biodegradable polyhydroxybutyrate scaffolds functionalized with reduced graphene oxide for tissue engineering  |f R. V. Chernozem, K. N. Romanyuk, I. Yu. Grubova [et al.] 
203 |a Text  |c electronic 
300 |a Title screen 
320 |a [References: 94 tit.] 
330 |a Piezoelectricity is considered to be one of the key functionalities in biomaterials to boost bone tissue regeneration, however, integrating biocompatibility, biodegradability and 3D structure with pronounced piezoresponse remains a material challenge. Herein, novel hybrid biocompatible 3D scaffolds based on biodegradable poly(3-hydroxybutyrate) (PHB) and reduced graphene oxide (rGO) flakes have been developed. Nanoscale insights revealed a more homogenous distribution and superior surface potential values of PHB fibers (33 ± 29 mV) with increasing rGO content up to 1.0 wt% (314 ± 31 mV). The maximum effective piezoresponse was detected at 0.7 wt% rGO content, demonstrating 2.5 and 1.7 times higher out-of-plane and in-plane values, respectively, than that for pure PHB fibers. The rGO addition led to enhanced zigzag chain formation between paired lamellae in PHB fibers. In contrast, a further increase in rGO content reduced the ?-crystal size and prevented zigzag chain conformation. A corresponding model explaining structural and molecular changes caused by rGO addition in electrospun PHB fibers is proposed. In addition, finite element analysis revealed a negligible vertical piezoresponse compared to lateral piezoresponse in uniaxially oriented PHB fibers based on ?-phase (P212121 space group). Thus, the present study demonstrates promising results for the development of biodegradable hybrid 3D scaffolds with an enhanced piezoresponse for various tissue engineering applications. 
333 |a Режим доступа: по договору с организацией-держателем ресурса 
338 |b Российский научный фонд  |d 20–63-47096 
461 |t Nano Energy 
463 |t Vol. 89  |v [106473, 15 p.]  |d 2021 
610 1 |a электронный ресурс 
610 1 |a труды учёных ТПУ 
610 1 |a polyhydroxybutyrate 
610 1 |a reduced graphene oxide 
610 1 |a scaffolds 
610 1 |a surface potential 
610 1 |a piezoelectric response 
610 1 |a modeling 
610 1 |a оксид графена 
610 1 |a леса 
610 1 |a поверхностный потенциал 
610 1 |a пьезоэлектрический эффект 
610 1 |a моделирование 
701 1 |a Chernozem  |b R. V.  |c physicist  |c Associate Professor of Tomsk Polytechnic University  |f 1992-  |g Roman Viktorovich  |3 (RuTPU)RU\TPU\pers\36450  |9 19499 
701 1 |a Romanyuk  |b K. N. 
701 1 |a Grubova  |b I. Yu.  |c physicist  |c engineer-researcher of Tomsk Polytechnic Universit  |f 1989-  |g Irina Yurievna  |3 (RuTPU)RU\TPU\pers\32674  |9 16573 
701 1 |a Chernozem  |b P. V.  |c specialist in the field of informatics and computer technology  |c Research Engineer of Tomsk Polytechnic University  |f 1997-  |g Polina Viktorovna  |3 (RuTPU)RU\TPU\pers\47140  |9 22733 
701 1 |a Surmeneva  |b M. A.  |c specialist in the field of material science  |c engineer-researcher of Tomsk Polytechnic University, Associate Scientist  |f 1984-  |g Maria Alexandrovna  |3 (RuTPU)RU\TPU\pers\31894  |9 15966 
701 1 |a Mukhortova  |b Yu. R.  |c Chemical engineer  |c Engineer of Tomsk Polytechnic University  |f 1976-  |g Yulia Ruslanovna  |3 (RuTPU)RU\TPU\pers\46606  |9 22264 
701 1 |a Wilhelm  |b M. 
701 1 |a Ludwig  |b T.  |g Tim 
701 1 |a Mathur  |b S.  |g Sanjay 
701 1 |a Kholkin  |b A. L.  |c physicist  |c Director of the International Research Center for PMEM of the Tomsk Polytechnic University, Candidate of Physical and Mathematical Sciences  |f 1954-  |g Andrei Leonidovich  |3 (RuTPU)RU\TPU\pers\47207 
701 1 |a Neyts  |b E. C.  |g Erik 
701 1 |a Parakhonskiy  |b B. V.  |g Bogdan 
701 1 |a Skirtach  |b A. G.  |g Andre 
701 1 |a Surmenev  |b R. A.  |c physicist  |c Associate Professor of Tomsk Polytechnic University, Senior researcher, Candidate of physical and mathematical sciences  |f 1982-  |g Roman Anatolievich  |3 (RuTPU)RU\TPU\pers\31885  |9 15957 
712 0 2 |a Национальный исследовательский Томский политехнический университет  |b Исследовательская школа химических и биомедицинских технологий  |b Научно-исследовательский центр "Физическое материаловедение и композитные материалы"  |3 (RuTPU)RU\TPU\col\24957 
712 0 2 |a Национальный исследовательский Томский политехнический университет  |b Исследовательская школа химических и биомедицинских технологий  |c (2017- )  |3 (RuTPU)RU\TPU\col\23537 
801 2 |a RU  |b 63413507  |c 20220512  |g RCR 
856 4 |u https://doi.org/10.1016/j.nanoen.2021.106473 
942 |c CF