Enhanced piezoresponse and surface electric potential of hybrid biodegradable polyhydroxybutyrate scaffolds functionalized with reduced graphene oxide for tissue engineering
| Parent link: | Nano Energy Vol. 89.— 2021.— [106473, 15 p.] |
|---|---|
| Corporate Authors: | , |
| Other Authors: | , , , , , , , , , , , , , |
| Summary: | Title screen Piezoelectricity is considered to be one of the key functionalities in biomaterials to boost bone tissue regeneration, however, integrating biocompatibility, biodegradability and 3D structure with pronounced piezoresponse remains a material challenge. Herein, novel hybrid biocompatible 3D scaffolds based on biodegradable poly(3-hydroxybutyrate) (PHB) and reduced graphene oxide (rGO) flakes have been developed. Nanoscale insights revealed a more homogenous distribution and superior surface potential values of PHB fibers (33 ± 29 mV) with increasing rGO content up to 1.0 wt% (314 ± 31 mV). The maximum effective piezoresponse was detected at 0.7 wt% rGO content, demonstrating 2.5 and 1.7 times higher out-of-plane and in-plane values, respectively, than that for pure PHB fibers. The rGO addition led to enhanced zigzag chain formation between paired lamellae in PHB fibers. In contrast, a further increase in rGO content reduced the ?-crystal size and prevented zigzag chain conformation. A corresponding model explaining structural and molecular changes caused by rGO addition in electrospun PHB fibers is proposed. In addition, finite element analysis revealed a negligible vertical piezoresponse compared to lateral piezoresponse in uniaxially oriented PHB fibers based on ?-phase (P212121 space group). Thus, the present study demonstrates promising results for the development of biodegradable hybrid 3D scaffolds with an enhanced piezoresponse for various tissue engineering applications. Режим доступа: по договору с организацией-держателем ресурса |
| Language: | English |
| Published: |
2021
|
| Subjects: | |
| Online Access: | https://doi.org/10.1016/j.nanoen.2021.106473 |
| Format: | Electronic Book Chapter |
| KOHA link: | https://koha.lib.tpu.ru/cgi-bin/koha/opac-detail.pl?biblionumber=667474 |
MARC
| LEADER | 00000naa0a2200000 4500 | ||
|---|---|---|---|
| 001 | 667474 | ||
| 005 | 20250826095132.0 | ||
| 035 | |a (RuTPU)RU\TPU\network\38679 | ||
| 090 | |a 667474 | ||
| 100 | |a 20220329d2021 k||y0rusy50 ba | ||
| 101 | 0 | |a eng | |
| 102 | |a NL | ||
| 135 | |a drcn ---uucaa | ||
| 181 | 0 | |a i | |
| 182 | 0 | |a b | |
| 200 | 1 | |a Enhanced piezoresponse and surface electric potential of hybrid biodegradable polyhydroxybutyrate scaffolds functionalized with reduced graphene oxide for tissue engineering |f R. V. Chernozem, K. N. Romanyuk, I. Yu. Grubova [et al.] | |
| 203 | |a Text |c electronic | ||
| 300 | |a Title screen | ||
| 320 | |a [References: 94 tit.] | ||
| 330 | |a Piezoelectricity is considered to be one of the key functionalities in biomaterials to boost bone tissue regeneration, however, integrating biocompatibility, biodegradability and 3D structure with pronounced piezoresponse remains a material challenge. Herein, novel hybrid biocompatible 3D scaffolds based on biodegradable poly(3-hydroxybutyrate) (PHB) and reduced graphene oxide (rGO) flakes have been developed. Nanoscale insights revealed a more homogenous distribution and superior surface potential values of PHB fibers (33 ± 29 mV) with increasing rGO content up to 1.0 wt% (314 ± 31 mV). The maximum effective piezoresponse was detected at 0.7 wt% rGO content, demonstrating 2.5 and 1.7 times higher out-of-plane and in-plane values, respectively, than that for pure PHB fibers. The rGO addition led to enhanced zigzag chain formation between paired lamellae in PHB fibers. In contrast, a further increase in rGO content reduced the ?-crystal size and prevented zigzag chain conformation. A corresponding model explaining structural and molecular changes caused by rGO addition in electrospun PHB fibers is proposed. In addition, finite element analysis revealed a negligible vertical piezoresponse compared to lateral piezoresponse in uniaxially oriented PHB fibers based on ?-phase (P212121 space group). Thus, the present study demonstrates promising results for the development of biodegradable hybrid 3D scaffolds with an enhanced piezoresponse for various tissue engineering applications. | ||
| 333 | |a Режим доступа: по договору с организацией-держателем ресурса | ||
| 338 | |b Российский научный фонд |d 20–63-47096 | ||
| 461 | |t Nano Energy | ||
| 463 | |t Vol. 89 |v [106473, 15 p.] |d 2021 | ||
| 610 | 1 | |a электронный ресурс | |
| 610 | 1 | |a труды учёных ТПУ | |
| 610 | 1 | |a polyhydroxybutyrate | |
| 610 | 1 | |a reduced graphene oxide | |
| 610 | 1 | |a scaffolds | |
| 610 | 1 | |a surface potential | |
| 610 | 1 | |a piezoelectric response | |
| 610 | 1 | |a modeling | |
| 610 | 1 | |a оксид графена | |
| 610 | 1 | |a леса | |
| 610 | 1 | |a поверхностный потенциал | |
| 610 | 1 | |a пьезоэлектрический эффект | |
| 610 | 1 | |a моделирование | |
| 701 | 1 | |a Chernozem |b R. V. |c physicist |c Associate Professor of Tomsk Polytechnic University |f 1992- |g Roman Viktorovich |3 (RuTPU)RU\TPU\pers\36450 |9 19499 | |
| 701 | 1 | |a Romanyuk |b K. N. | |
| 701 | 1 | |a Grubova |b I. Yu. |c physicist |c engineer-researcher of Tomsk Polytechnic Universit |f 1989- |g Irina Yurievna |3 (RuTPU)RU\TPU\pers\32674 |9 16573 | |
| 701 | 1 | |a Chernozem |b P. V. |c specialist in the field of informatics and computer technology |c Research Engineer of Tomsk Polytechnic University |f 1997- |g Polina Viktorovna |3 (RuTPU)RU\TPU\pers\47140 |9 22733 | |
| 701 | 1 | |a Surmeneva |b M. A. |c specialist in the field of material science |c engineer-researcher of Tomsk Polytechnic University, Associate Scientist |f 1984- |g Maria Alexandrovna |3 (RuTPU)RU\TPU\pers\31894 |9 15966 | |
| 701 | 1 | |a Mukhortova |b Yu. R. |c Chemical engineer |c Engineer of Tomsk Polytechnic University |f 1976- |g Yulia Ruslanovna |3 (RuTPU)RU\TPU\pers\46606 |9 22264 | |
| 701 | 1 | |a Wilhelm |b M. | |
| 701 | 1 | |a Ludwig |b T. |g Tim | |
| 701 | 1 | |a Mathur |b S. |g Sanjay | |
| 701 | 1 | |a Kholkin |b A. L. |c physicist |c Director of the International Research Center for PMEM of the Tomsk Polytechnic University, Candidate of Physical and Mathematical Sciences |f 1954- |g Andrei Leonidovich |3 (RuTPU)RU\TPU\pers\47207 | |
| 701 | 1 | |a Neyts |b E. C. |g Erik | |
| 701 | 1 | |a Parakhonskiy |b B. V. |g Bogdan | |
| 701 | 1 | |a Skirtach |b A. G. |g Andre | |
| 701 | 1 | |a Surmenev |b R. A. |c physicist |c Associate Professor of Tomsk Polytechnic University, Senior researcher, Candidate of physical and mathematical sciences |f 1982- |g Roman Anatolievich |3 (RuTPU)RU\TPU\pers\31885 |9 15957 | |
| 712 | 0 | 2 | |a Национальный исследовательский Томский политехнический университет |b Исследовательская школа химических и биомедицинских технологий |b Научно-исследовательский центр "Физическое материаловедение и композитные материалы" |3 (RuTPU)RU\TPU\col\24957 |
| 712 | 0 | 2 | |a Национальный исследовательский Томский политехнический университет |b Исследовательская школа химических и биомедицинских технологий |c (2017- ) |3 (RuTPU)RU\TPU\col\23537 |
| 801 | 2 | |a RU |b 63413507 |c 20220512 |g RCR | |
| 856 | 4 | |u https://doi.org/10.1016/j.nanoen.2021.106473 | |
| 942 | |c CF | ||