Enhanced piezoresponse and surface electric potential of hybrid biodegradable polyhydroxybutyrate scaffolds functionalized with reduced graphene oxide for tissue engineering

Bibliographic Details
Parent link:Nano Energy
Vol. 89.— 2021.— [106473, 15 p.]
Corporate Authors: Национальный исследовательский Томский политехнический университет Исследовательская школа химических и биомедицинских технологий Научно-исследовательский центр "Физическое материаловедение и композитные материалы", Национальный исследовательский Томский политехнический университет Исследовательская школа химических и биомедицинских технологий
Other Authors: Chernozem R. V. Roman Viktorovich, Romanyuk K. N., Grubova I. Yu. Irina Yurievna, Chernozem P. V. Polina Viktorovna, Surmeneva M. A. Maria Alexandrovna, Mukhortova Yu. R. Yulia Ruslanovna, Wilhelm M., Ludwig T. Tim, Mathur S. Sanjay, Kholkin A. L. Andrei Leonidovich, Neyts E. C. Erik, Parakhonskiy B. V. Bogdan, Skirtach A. G. Andre, Surmenev R. A. Roman Anatolievich
Summary:Title screen
Piezoelectricity is considered to be one of the key functionalities in biomaterials to boost bone tissue regeneration, however, integrating biocompatibility, biodegradability and 3D structure with pronounced piezoresponse remains a material challenge. Herein, novel hybrid biocompatible 3D scaffolds based on biodegradable poly(3-hydroxybutyrate) (PHB) and reduced graphene oxide (rGO) flakes have been developed. Nanoscale insights revealed a more homogenous distribution and superior surface potential values of PHB fibers (33 ± 29 mV) with increasing rGO content up to 1.0 wt% (314 ± 31 mV). The maximum effective piezoresponse was detected at 0.7 wt% rGO content, demonstrating 2.5 and 1.7 times higher out-of-plane and in-plane values, respectively, than that for pure PHB fibers. The rGO addition led to enhanced zigzag chain formation between paired lamellae in PHB fibers. In contrast, a further increase in rGO content reduced the ?-crystal size and prevented zigzag chain conformation. A corresponding model explaining structural and molecular changes caused by rGO addition in electrospun PHB fibers is proposed. In addition, finite element analysis revealed a negligible vertical piezoresponse compared to lateral piezoresponse in uniaxially oriented PHB fibers based on ?-phase (P212121 space group). Thus, the present study demonstrates promising results for the development of biodegradable hybrid 3D scaffolds with an enhanced piezoresponse for various tissue engineering applications.
Режим доступа: по договору с организацией-держателем ресурса
Published: 2021
Subjects:
Online Access:https://doi.org/10.1016/j.nanoen.2021.106473
Format: Electronic Book Chapter
KOHA link:https://koha.lib.tpu.ru/cgi-bin/koha/opac-detail.pl?biblionumber=667474