Quantifying Chaos by Various Computational Methods. Part 2: Vibrations of the Bernoulli–Euler Beam Subjected to Periodic and Colored Noise

Bibliographic Details
Parent link:Entropy
Vol. 20.— 2018.— [170, 13 p.]
Corporate Author: Национальный исследовательский Томский политехнический университет Институт кибернетики Кафедра инженерной графики и промышленного дизайна Научно-учебная лаборатория 3D моделирования
Other Authors: Awrejcewicz J. Jan, Krysko A. V. Anton Vadimovich, Erofeev N. P. Nikolay Pavlovich, Dobriyan V. V. Vitaly Vyacheslavovich, Barulina M. A. Marina Aleksandrovna, Krysko V. A. Vadim
Summary:Title screen
In this part of the paper, the theory of nonlinear dynamics of flexible Euler–Bernoulli beams (the kinematic model of the first-order approximation) under transverse harmonic load and colored noise has been proposed. It has been shown that the introduced concept of phase transition allows for further generalization of the problem. The concept has been extended to a so-called noise-induced transition, which is a novel transition type exhibited by nonequilibrium systems embedded in a stochastic fluctuated medium, the properties of which depend on time and are influenced by external noise. Colored noise excitation of a structural system treated as a system with an infinite number of degrees of freedom has been studied.
Published: 2018
Subjects:
Online Access:https://doi.org/10.3390/e20030170
Format: Electronic Book Chapter
KOHA link:https://koha.lib.tpu.ru/cgi-bin/koha/opac-detail.pl?biblionumber=666984