Symmetry operators and separation of variables in the (2+1)-dimensional Dirac equation with external electromagnetic field
Parent link: | International Journal of Geometric Methods in Modern Physics: Scientific Journal Vol. 15, iss. 5.— 2018.— [1850085, 24 p.] |
---|---|
第一著者: | |
その他の著者: | |
要約: | Title screen We obtain and analyze equations determining first-order differential symmetry operators with matrix coefficients for the Dirac equation with an external electromagnetic potential in a (2+1)-dimensional Riemann (curved) spacetime. Nonequivalent complete sets of mutually commuting symmetry operators are classified in a (2+1)-dimensional Minkowski (flat) space. For each of the sets, we carry out a complete separation of variables in the Dirac equation and find a corresponding electromagnetic potential permitting separation of variables. Режим доступа: по договору с организацией-держателем ресурса |
言語: | 英語 |
出版事項: |
2018
|
主題: | |
オンライン・アクセス: | https://doi.org/10.1142/S0219887818500858 |
フォーマット: | 電子媒体 図書の章 |
KOHA link: | https://koha.lib.tpu.ru/cgi-bin/koha/opac-detail.pl?biblionumber=666956 |