Symmetry operators and separation of variables in the (2+1)-dimensional Dirac equation with external electromagnetic field

التفاصيل البيبلوغرافية
Parent link:International Journal of Geometric Methods in Modern Physics: Scientific Journal
Vol. 15, iss. 5.— 2018.— [1850085, 24 p.]
المؤلف الرئيسي: Shapovalov A. V. Aleksandr Vasilyevich
مؤلفون آخرون: Breev A. I. Aleksandr Igorevich
الملخص:Title screen
We obtain and analyze equations determining first-order differential symmetry operators with matrix coefficients for the Dirac equation with an external electromagnetic potential in a (2+1)-dimensional Riemann (curved) spacetime. Nonequivalent complete sets of mutually commuting symmetry operators are classified in a (2+1)-dimensional Minkowski (flat) space. For each of the sets, we carry out a complete separation of variables in the Dirac equation and find a corresponding electromagnetic potential permitting separation of variables.
Режим доступа: по договору с организацией-держателем ресурса
اللغة:الإنجليزية
منشور في: 2018
الموضوعات:
الوصول للمادة أونلاين:https://doi.org/10.1142/S0219887818500858
التنسيق: الكتروني فصل الكتاب
KOHA link:https://koha.lib.tpu.ru/cgi-bin/koha/opac-detail.pl?biblionumber=666956