Symmetry operators and separation of variables in the (2+1)-dimensional Dirac equation with external electromagnetic field
Parent link: | International Journal of Geometric Methods in Modern Physics: Scientific Journal Vol. 15, iss. 5.— 2018.— [1850085, 24 p.] |
---|---|
Auteur principal: | |
Autres auteurs: | |
Résumé: | Title screen We obtain and analyze equations determining first-order differential symmetry operators with matrix coefficients for the Dirac equation with an external electromagnetic potential in a (2+1)-dimensional Riemann (curved) spacetime. Nonequivalent complete sets of mutually commuting symmetry operators are classified in a (2+1)-dimensional Minkowski (flat) space. For each of the sets, we carry out a complete separation of variables in the Dirac equation and find a corresponding electromagnetic potential permitting separation of variables. Режим доступа: по договору с организацией-держателем ресурса |
Langue: | anglais |
Publié: |
2018
|
Sujets: | |
Accès en ligne: | https://doi.org/10.1142/S0219887818500858 |
Format: | Électronique Chapitre de livre |
KOHA link: | https://koha.lib.tpu.ru/cgi-bin/koha/opac-detail.pl?biblionumber=666956 |