Symmetry operators and separation of variables in the (2+1)-dimensional Dirac equation with external electromagnetic field

ग्रंथसूची विवरण
Parent link:International Journal of Geometric Methods in Modern Physics: Scientific Journal
Vol. 15, iss. 5.— 2018.— [1850085, 24 p.]
मुख्य लेखक: Shapovalov A. V. Aleksandr Vasilyevich
अन्य लेखक: Breev A. I. Aleksandr Igorevich
सारांश:Title screen
We obtain and analyze equations determining first-order differential symmetry operators with matrix coefficients for the Dirac equation with an external electromagnetic potential in a (2+1)-dimensional Riemann (curved) spacetime. Nonequivalent complete sets of mutually commuting symmetry operators are classified in a (2+1)-dimensional Minkowski (flat) space. For each of the sets, we carry out a complete separation of variables in the Dirac equation and find a corresponding electromagnetic potential permitting separation of variables.
Режим доступа: по договору с организацией-держателем ресурса
भाषा:अंग्रेज़ी
प्रकाशित: 2018
विषय:
ऑनलाइन पहुंच:https://doi.org/10.1142/S0219887818500858
स्वरूप: इलेक्ट्रोनिक पुस्तक अध्याय
KOHA link:https://koha.lib.tpu.ru/cgi-bin/koha/opac-detail.pl?biblionumber=666956

MARC

LEADER 00000naa0a2200000 4500
001 666956
005 20250227160610.0
035 |a (RuTPU)RU\TPU\network\38160 
035 |a RU\TPU\network\38158 
090 |a 666956 
100 |a 20220208d2018 k||y0rusy50 ba 
101 0 |a eng 
102 |a US 
135 |a drcn ---uucaa 
181 0 |a i  
182 0 |a b 
200 1 |a Symmetry operators and separation of variables in the (2+1)-dimensional Dirac equation with external electromagnetic field  |f A. V. Shapovalov, A. I. Breev 
203 |a Text  |c electronic 
300 |a Title screen 
330 |a We obtain and analyze equations determining first-order differential symmetry operators with matrix coefficients for the Dirac equation with an external electromagnetic potential in a (2+1)-dimensional Riemann (curved) spacetime. Nonequivalent complete sets of mutually commuting symmetry operators are classified in a (2+1)-dimensional Minkowski (flat) space. For each of the sets, we carry out a complete separation of variables in the Dirac equation and find a corresponding electromagnetic potential permitting separation of variables. 
333 |a Режим доступа: по договору с организацией-держателем ресурса 
461 |t International Journal of Geometric Methods in Modern Physics  |o Scientific Journal 
463 |t Vol. 15, iss. 5  |v [1850085, 24 p.]  |d 2018 
610 1 |a электронный ресурс 
610 1 |a труды учёных ТПУ 
610 1 |a (2+1)-dimensional Dirac equation 
610 1 |a symmetry operators 
610 1 |a separation of variables 
700 1 |a Shapovalov  |b A. V.  |c mathematician  |c Professor of Tomsk Polytechnic University, Doctor of physical and mathematical sciences  |f 1949-  |g Aleksandr Vasilyevich  |3 (RuTPU)RU\TPU\pers\31734 
701 1 |a Breev  |b A. I.  |g Aleksandr Igorevich 
712 0 2 |a Национальный исследовательский Томский политехнический университет  |b Исследовательская школа физики высокоэнергетических процессов  |c (2017- )  |3 (RuTPU)RU\TPU\col\23551 
801 2 |a RU  |b 63413507  |c 20220208  |g RCR 
856 4 |u https://doi.org/10.1142/S0219887818500858 
942 |c CF