One-Dimensional Fokker–Planck Equation with Quadratically Nonlinear Quasilocal Drift

Podrobná bibliografie
Parent link:Russian Physics Journal
Vol. 60, iss. 12.— 2018.— [P. 2063-2072]
Hlavní autor: Shapovalov A. V. Aleksandr Vasilyevich
Korporativní autor: Национальный исследовательский Томский политехнический университет Исследовательская школа физики высокоэнергетических процессов
Shrnutí:Title screen
The Fokker–Planck equation in one-dimensional spacetime with quadratically nonlinear nonlocal drift in the quasilocal approximation is reduced with the help of scaling of the coordinates and time to a partial differential equation with a third derivative in the spatial variable. Determining equations for the symmetries of the reduced equation are derived and the Lie symmetries are found. A group invariant solution having the form of a traveling wave is found. Within the framework of Adomian’s iterative method, the first iterations of an approximate solution of the Cauchy problem are obtained. Two illustrative examples of exact solutions are found.
Режим доступа: по договору с организацией-держателем ресурса
Jazyk:angličtina
Vydáno: 2018
Témata:
On-line přístup:https://doi.org/10.1007/s11182-018-1327-4
Médium: Elektronický zdroj Kapitola
KOHA link:https://koha.lib.tpu.ru/cgi-bin/koha/opac-detail.pl?biblionumber=666950

Podobné jednotky