One-Dimensional Fokker–Planck Equation with Quadratically Nonlinear Quasilocal Drift

Bibliografiset tiedot
Parent link:Russian Physics Journal
Vol. 60, iss. 12.— 2018.— [P. 2063-2072]
Päätekijä: Shapovalov A. V. Aleksandr Vasilyevich
Yhteisötekijä: Национальный исследовательский Томский политехнический университет Исследовательская школа физики высокоэнергетических процессов
Yhteenveto:Title screen
The Fokker–Planck equation in one-dimensional spacetime with quadratically nonlinear nonlocal drift in the quasilocal approximation is reduced with the help of scaling of the coordinates and time to a partial differential equation with a third derivative in the spatial variable. Determining equations for the symmetries of the reduced equation are derived and the Lie symmetries are found. A group invariant solution having the form of a traveling wave is found. Within the framework of Adomian’s iterative method, the first iterations of an approximate solution of the Cauchy problem are obtained. Two illustrative examples of exact solutions are found.
Режим доступа: по договору с организацией-держателем ресурса
Kieli:englanti
Julkaistu: 2018
Aiheet:
Linkit:https://doi.org/10.1007/s11182-018-1327-4
Aineistotyyppi: Elektroninen Kirjan osa
KOHA link:https://koha.lib.tpu.ru/cgi-bin/koha/opac-detail.pl?biblionumber=666950