X-ray Bragg Ptychography on a Single InGaN/GaN Core-Shell Nanowire
| Parent link: | ACS Nano Vol. 11, iss. 7.— 2017.— [P. 6605-6611] |
|---|---|
| Korporativní autor: | |
| Další autoři: | , , , , , , , , , , , |
| Shrnutí: | Title screen The future of solid-state lighting can be potentially driven by applications of InGaN/GaN core–shell nanowires. These heterostructures provide the possibility for fine-tuning of functional properties by controlling a strain state between mismatched layers. We present a nondestructive study of a single 400 nm-thick InGaN/GaN core–shell nanowire using two-dimensional (2D) X-ray Bragg ptychography (XBP) with a nanofocused X-ray beam. The XBP reconstruction enabled the determination of a detailed three-dimensional (3D) distribution of the strain in the particular nanowire using a model based on finite element method. We observed the strain induced by the lattice mismatch between the GaN core and InGaN shell to be in the range from -0.1% to 0.15% for an In concentration of 30%. The maximum value of the strain component normal to the facets was concentrated at the transition region between the main part of the nanowire and the GaN tip. In addition, a variation in misfit strain relaxation between the axial growth and in-plane directions was revealed. |
| Vydáno: |
2017
|
| Témata: | |
| On-line přístup: | https://doi.org/10.1021/acsnano.6b08122 |
| Médium: | Elektronický zdroj Kapitola |
| KOHA link: | https://koha.lib.tpu.ru/cgi-bin/koha/opac-detail.pl?biblionumber=666913 |
MARC
| LEADER | 00000naa0a2200000 4500 | ||
|---|---|---|---|
| 001 | 666913 | ||
| 005 | 20250227141157.0 | ||
| 035 | |a (RuTPU)RU\TPU\network\38117 | ||
| 035 | |a RU\TPU\network\35094 | ||
| 090 | |a 666913 | ||
| 100 | |a 20220204d2017 k||y0rusy50 ba | ||
| 101 | 0 | |a eng | |
| 135 | |a drcn ---uucaa | ||
| 181 | 0 | |a i | |
| 182 | 0 | |a b | |
| 200 | 1 | |a X-ray Bragg Ptychography on a Single InGaN/GaN Core-Shell Nanowire |f D. Dzhigaev, T. Stankevic, Zh. Bi [et al.] | |
| 203 | |a Text |c electronic | ||
| 300 | |a Title screen | ||
| 320 | |a [References: 21 tit.] | ||
| 330 | |a The future of solid-state lighting can be potentially driven by applications of InGaN/GaN core–shell nanowires. These heterostructures provide the possibility for fine-tuning of functional properties by controlling a strain state between mismatched layers. We present a nondestructive study of a single 400 nm-thick InGaN/GaN core–shell nanowire using two-dimensional (2D) X-ray Bragg ptychography (XBP) with a nanofocused X-ray beam. The XBP reconstruction enabled the determination of a detailed three-dimensional (3D) distribution of the strain in the particular nanowire using a model based on finite element method. We observed the strain induced by the lattice mismatch between the GaN core and InGaN shell to be in the range from -0.1% to 0.15% for an In concentration of 30%. The maximum value of the strain component normal to the facets was concentrated at the transition region between the main part of the nanowire and the GaN tip. In addition, a variation in misfit strain relaxation between the axial growth and in-plane directions was revealed. | ||
| 461 | |t ACS Nano | ||
| 463 | |t Vol. 11, iss. 7 |v [P. 6605-6611] |d 2017 | ||
| 610 | 1 | |a электронный ресурс | |
| 610 | 1 | |a труды учёных ТПУ | |
| 610 | 1 | |a X-rays | |
| 610 | 1 | |a plastics | |
| 610 | 1 | |a nitrides | |
| 610 | 1 | |a scattering | |
| 610 | 1 | |a physical and chemical processes | |
| 610 | 1 | |a рентген | |
| 610 | 1 | |a пластмассы | |
| 610 | 1 | |a нитриды | |
| 610 | 1 | |a рассеяние | |
| 610 | 1 | |a физико-химические процессы | |
| 610 | 1 | |a нанопровода | |
| 701 | 1 | |a Dzhigaev |b D. |g Dmitry | |
| 701 | 1 | |a Stankevic |b T. |g Tomas | |
| 701 | 1 | |a Bi |b Zh. |g Zhaoxia | |
| 701 | 1 | |a Lazarev |b S. V. |c physicist |c engineer at Tomsk Polytechnic University |f 1984- |g Sergey Vladimirovich |3 (RuTPU)RU\TPU\pers\35210 | |
| 701 | 1 | |a Rose |b M. |g Max | |
| 701 | 1 | |a Shabalin |b Anatoly |g A. G. | |
| 701 | 1 | |a Reinhardt |b J. |g Juliane | |
| 701 | 1 | |a Mikkelsen |b A. |g Anders | |
| 701 | 1 | |a Samuelson |b L. |g Lars | |
| 701 | 1 | |a Falkenberg |b G. |g Gerald | |
| 701 | 1 | |a Feidenhans'L |b R. |g Robert | |
| 701 | 1 | |a Vartanyants |b I. A. |g Ivan | |
| 712 | 0 | 2 | |a Национальный исследовательский Томский политехнический университет |b Исследовательская школа физики высокоэнергетических процессов |c (2017- ) |3 (RuTPU)RU\TPU\col\23551 |
| 801 | 2 | |a RU |b 63413507 |c 20220204 |g RCR | |
| 856 | 4 | |u https://doi.org/10.1021/acsnano.6b08122 | |
| 942 | |c CF | ||