The influence of the drop formation rate at spreading over a microstructured surface on the contact angle
| Parent link: | Thermophysics and Aeromechanics Vol. 25, iss. 2.— 2018.— [P. 247–254] |
|---|---|
| Corporate Authors: | , , |
| Other Authors: | , , , , |
| Summary: | Title screen The article presents the experimental dependences of a macro-contact angle and the diameter of a distilled water drop spreading over solid microstructured surface on surface average roughness (Ra) and fluid flow rate (G). It has been found that at changing G from 0.005 to 0.02 ml/s, the contact angle decreases, and at a liquid flow rate over 0.02 ml/s, it increases. With small values of G (0.005−0.01 ml/s), the drop diameter grows throughout the spreading process. In the range of G from 0.02 to 0.16 ml/s at the final stage of spreading, the contact line pinning, i.e., the diam-eter constancy, has been detected. The hypothesis about the mechanism of the pinning process has been formulated: it is due to the zero sum of all forces acting on the drop (inertia, viscosity, friction, gravity, and surface tension. Режим доступа: по договору с организацией-держателем ресурса |
| Published: |
2018
|
| Subjects: | |
| Online Access: | https://doi.org/10.1134/S0869864318020099 |
| Format: | Electronic Book Chapter |
| KOHA link: | https://koha.lib.tpu.ru/cgi-bin/koha/opac-detail.pl?biblionumber=666641 |