Обоснование расходных характеристик рекуператора для тепловой подготовки агрегатов машин и оборудования

Bibliographic Details
Parent link:Обработка металлов (технология, оборудование, инструменты): научно-технический и производственный журнал.— , 1998-
Т. 22, № 4.— 2020.— [С. 82-93]
Corporate Author: Национальный исследовательский Томский политехнический университет Инженерная школа новых производственных технологий Отделение материаловедения
Other Authors: Чернухин Р. В. Роман Владимирович, Долгушин А. А. Алексей Александрович, Касимов Н. Г. Николай Гайсович, Иванцивский В. В. Владимир Владимирович, Лобанов Д. В. Дмитрий Владимирович, Васильев С. А. Сергей Анатольевич, Мартюшев Н. В. Никита Владимирович
Summary:Заглавие с экрана
Машины и оборудование в своем составе могут содержать гидравлические системы для обеспечения функционирования основных и вспомогательных систем. Известно, что общим недостатком гидравлических систем и приводов является зависимость вязкости применяемых жидкостей от температуры. Заметная часть технологических машин и оборудования размещается в неотапливаемых или плохо отапливаемых производственных помещениях, и изменение вязкости рабочих жидкостей при понижении температуры внешней среды может существенным образом влиять на параметры технологических процессов. Важным фактором обеспечения стабильности параметров технологических процессов является степень подготовки машин и оборудования к работе в условиях низких температур или в условиях колебаний температурного режима. В связи с этим встает вопрос обеспечения необходимой температуры технических жидкостей перед включением машин и оборудования и поддержания необходимого теплового режима в процессе работы их узлов и агрегатов. Один из способов решения данной задачи заключается в применении внешних источников тепла. Такими источниками могут служить различные теплообменные устройства. В теплообменном устройстве осуществляется нагрев теплоносителя, который затем подается в теплообменную рубашку агрегатов машин и оборудования. Для нагрева теплоносителя в теплообменнике применяются как жидкие, так и газообразные среды. В последнем случае теплообменник называют рекуператором. Эффективность работы рекуператора определяется его конструктивными и расходными характеристиками.
Существуют методики аналитического определения как конструктивных, так и расходных характеристик рекуператора, однако эти методы обладают достаточно большой трудоемкостью. Применение компьютерного моделирования тепловых процессов позволяет успешно решать задачу расчета, а также существенно сокращает время проектирования теплообменных аппаратов. Целью работы является обоснование расходных характеристик рекуператора для поддержания теплового режима посредством компьютерного моделирования. Методом исследования является компьютерное моделирование тепловых процессов, которое реализуется с помощью программного комплекса SolidWorks компании Dassault Systems и его приложения Flow Simulation для моделирования тепловых процессов в научных исследованиях и инженерной деятельности. Результаты и обсуждение. Моделирование проводилось в стационарном и нестационарном режиме и позволило определить влияние производительности насоса на температуру теплоносителя на выходе из рекуператора. Установлено что при расходе теплоносителя более 20 л/ч его температура не достигает необходимых значений несмотря на то, что газы, выходящие из рекуператора, имеют существенную остаточную температуру. Оценка эффективности рекуператора проводилась с помощью определения эксергетического КПД. Исходя из полученных данных, наиболее предпочтительными оказались значения производительности насоса, лежащие в диапазоне от 4 до 20 л/ч.
Machines and equipment in its composition may contain hydraulic systems to ensure the functioning of the main and auxiliary systems. It is known that a common disadvantage of hydraulic systems and drives is the dependence of the viscosity of the applied fluids on temperature. A noticeable part of technological machines and equipment is located in unheated or poorly heated industrial premises and a change in the viscosity of working fluids with a decrease in the ambient temperature can significantly affect the parameters of technological processes. An important factor in ensuring the stability of the technological processes parameters is the degree of preparation of machines and equipment for operation at low temperatures or in conditions of fluctuating temperature conditions. In this regard, the question arises of ensuring the required temperature of technical fluids before turning on machines and equipment, and maintaining the required thermal regime during the operation of its units and assemblies. One way to solve this problem is to use external heat sources. Various heat exchange devices can serve as such sources. In the heat exchange device, the heat carrier is heated, which is then fed into the heat exchange jacket of the machinery and equipment units. Both liquid and gaseous media are used to heat the coolant in the heat exchanger. In the latter case, the heat exchanger is called a recuperator. The efficiency of the recuperator is determined by its design and flow characteristics.
There are methods for the analytical determination of both the design and flow characteristics of the recuperator, but these methods are quite laborious. The use of computer simulation of thermal processes makes it possible to successfully solve the calculation problem, and also significantly reduces the design time of heat exchangers. The aim of the work is to substantiate the flow characteristics of the recuperator for maintaining the thermal regime through computer simulation. The research method is computer simulation of thermal processes, which is implemented using the SolidWorks software package from Dassault Systems and its Flow Simulation application for simulating thermal processes in scientific research and engineering. Results and discussion. Simulation carried out in stationary and non-stationary modes made it possible to determine the effect of pump performance on the temperature of the coolant at the outlet of the recuperator. It is found that when the heat carrier flow rate is more than 20 l/h, its temperature does not reach the required values, despite the fact that the gases leaving the recuperator have a significant residual temperature. The efficiency of the recuperator is assessed by determining the exergy efficiency. Based on the data obtained, the most preferable are the pump productivity values lying in the range from 4 to 20 l/h.
Режим доступа: по договору с организацией-держателем ресурса
Published: 2020
Subjects:
Online Access:https://elibrary.ru/item.asp?id=44320547
https://doi.org/10.17212/1994-6309-2020-22.4-82-93
Format: Electronic Book Chapter
KOHA link:https://koha.lib.tpu.ru/cgi-bin/koha/opac-detail.pl?biblionumber=665360