Variable separation method for solving boundary value problems of isotropic linearly viscoelastic bodies

Bibliographic Details
Parent link:Acta Mechanica
Vol. 231, iss. 9.— 2020.— [P. 3583-3606]
Corporate Authors: Национальный исследовательский Томский политехнический университет Школа базовой инженерной подготовки Отделение общетехнических дисциплин, Национальный исследовательский Томский политехнический университет Инженерная школа природных ресурсов Отделение нефтегазового дела
Other Authors: Svetashkov A. A. Aleksandr Andreevich, Kupriyanov N. A. Nikolay Amvrosievich, Pavlov M. S. Mikhail Sergeevich, Vakurov A. A. Andrey Aleksandrovich
Summary:Title screen
The availability of accurate methods to mathematically model and predict the behavior of viscoelastic structures under mechanical, thermal and other loads remains a critical issue in different fields ranging from construction engineering to aerospace. Methods to calculate elastic structures are well developed; however, considering that viscoelastic properties require significant effort, we have developed and tested a new analytical method to solve boundary problems of isotropic linearly viscoelastic bodies. According to the proposed algorithm, to find the solution for a linear viscoelasticity boundary problem, we must replace the elastic constants with some functions of time and then numerically or analytically calculate the stress-strain state of the structure at any moment of its loading history. As a result of the theoretical justification of the proposed method, carried out in three independent ways, identical expressions of effective modules are obtained. The obtained results, as well as testing on solutions to several problems, allow us to conclude that the new analytical method is applicable to the calculation of the stress-strain state of viscoelastic bodies.
Режим доступа: по договору с организацией-держателем ресурса
Published: 2020
Series:Original paper
Subjects:
Online Access:https://doi.org/10.1007/s00707-020-02698-4
Format: Electronic Book Chapter
KOHA link:https://koha.lib.tpu.ru/cgi-bin/koha/opac-detail.pl?biblionumber=665278