Cell response to PLA scaffolds functionalized with various seaweed polysaccharides

Bibliographic Details
Parent link:International Journal of Polymeric Materials and Polymeric Biomaterials
Vol. 71, iss. 2.— 2020.— [9 p.]
Corporate Author: Национальный исследовательский Томский политехнический университет Исследовательская школа химических и биомедицинских технологий
Other Authors: Ozaltin K. Kadir, Vargun E. Elif, Di Martino A. Antonio, Capakova Zd. Zdenka, Lehocky M. Marian, Humpolicek P. Petr, Kazantseva N. E. Nataljya, Saha P. Petr
Summary:Title screen
The porous polylactic acid matrix has been particularly developed as a scaffold in tissue engineering, drug loading, and wound dressing. However, the loading of active chemical compounds is challenging due to its highly hydrophobic nature and lack of functional groups for chemical bonding. Plasma treatment is a fast, heat and chemical-free solution to increase its hydrophilicity by oxidative functional groups and physical etching. In this study, a highly porous PLA scaffold was obtained by polyethylene glycol pore formation agent and treated by radiofrequency (RF) air plasma. Fucoidan from Fucus vesiculosus, Macrocystis pyrifera, and Undaria pinnatifida were used to immobilize onto the activated porous PLA surface for use as medicated wound dressings. The chemical composition and morphology were investigated by FTIR, SEM-EDS analysis, and cytocompatibility assay was studied mouse embryonic fibroblast cells (NIH/3T3).
Published: 2020
Subjects:
Online Access:https://doi.org/10.1080/00914037.2020.1798443
Format: Electronic Book Chapter
KOHA link:https://koha.lib.tpu.ru/cgi-bin/koha/opac-detail.pl?biblionumber=664916