Traversability estimation system for mobile robot in heterogeneous environment with different underlying surface characteristics

מידע ביבליוגרפי
Parent link:Computer Sciences and Information Technologies (CSIT): 12th International Scientific and Technical Conference, Lviv, Ukraine, 5-8 September, 2017. [P. 549-554].— , 2017
מחבר ראשי: Andrakhanov A. A. Anatoliy Aleksandrovich
מחבר תאגידי: Национальный исследовательский Томский политехнический университет Инженерная школа информационных технологий и робототехники Отделение автоматизации и робототехники
מחברים אחרים: Stuchkov A. V. Anton Vitaljevich
סיכום:Title screen
One of the key tasks of Outdoor-type mobile robotics is traversability estimation of underlying surfaces in a in a priori of an unknown heterogeneous environment. The paper presents practical realization of traversability estimation system based on group method of data handling (GMDH). This method is classical technique of data mining and one of the first techniques of Deep Learning. The results of color, geometry and texture features extraction by developed computer vision unit are presented step by step. Also the results of model training (Twice-Multilayered Modified Polynomial Neural Network with active neurons is used as one of the GMDH algorithms) for different input features subsets combinations and for two variants of traversability estimation (the robot leaves the area being traversed, but remains within a specified radius and traversing an area within a given time) are considered. The obtained results testify the efficiency of the developed traversability estimation system.
Режим доступа: по договору с организацией-держателем ресурса
יצא לאור: 2017
נושאים:
גישה מקוונת:https://doi.org/10.1109/STC-CSIT.2017.8098847
פורמט: אלקטרוני Book Chapter
KOHA link:https://koha.lib.tpu.ru/cgi-bin/koha/opac-detail.pl?biblionumber=664817