A conditionally integrable bi-confluent Heun potential involving inverse square root and centrifugal barrier terms

Bibliographic Details
Parent link:Zeitschrift fur Naturforschung - Section A Journal of Physical Sciences
Vol. 73, iss. 5.— 2018.— [P. 407-414]
Main Author: energy spectrum T. A. Tigran Arturovich
Corporate Author: Национальный исследовательский Томский политехнический университет Инженерная школа ядерных технологий Отделение экспериментальной физики
Other Authors: Kraynov V. P. Vladimir Pavlovich, Ishkhanyan A. Artur
Summary:Title screen
We present a conditionally integrable potential, belonging to the bi-confluent Heun class, for which the Schrodinger equation is solved in terms of the confluent hypergeometric functions. The potential involves an attractive inverse square root term x-1/2 with arbitrary strength and a repulsive centrifugal barrier core x-2 with the strength fixed to a constant. This is a potential well defined on the half-axis. Each of the fundamental solutions composing the general solution of the Schrodinger equation is written as an irreducible linear combination, with non-constant coefficients, of two confluent hypergeometric functions. We present the explicit solution in terms of the non-integer order Hermite functions of scaled and shifted argument and discuss the bound states supported by the potential. We derive the exact equation for the energy spectrum and approximate that by a highly accurate transcendental equation involving trigonometric functions. Finally, we construct an accurate approximation for the bound-state energy levels.
Режим доступа: по договору с организацией-держателем ресурса
Published: 2018
Subjects:
Online Access:https://doi.org/doi:10.1515/zna-2017-0314
Format: Electronic Book Chapter
KOHA link:https://koha.lib.tpu.ru/cgi-bin/koha/opac-detail.pl?biblionumber=664730