On conformal spectral gap estimates of the Dirichlet-Laplacian

Bibliographic Details
Parent link:Алгебра и анализ
Т. 31, № 2.— 2019.— [С. 189-203]
Main Author: Goldshtein V. A. Vladimir
Corporate Author: Национальный исследовательский Томский политехнический университет Школа базовой инженерной подготовки Отделение математики и информатики
Other Authors: Pchelintsev V. A. Valery Anatoljevich, Ukhlov А. D. Alexander Dadaroolovich
Summary:Заглавие с экрана
We study spectral stability estimates of the Dirichlet eigenvalues of the Laplacian in nonconvex domains [omega] C R2. With the help of these estimates, we obtain asymptotically sharp inequalities of ratios of eigenvalues in the framework of the Payne-Pdlya-Weinberger inequalities. These estimates are equivalent to spectral gap estimates of the Dirichlet eigenvalues of the Laplacian in nonconvex domains in terms of conformal (hyperbolic) geometry.
Режим доступа: по договору с организацией-держателем ресурса
Published: 2019
Subjects:
Online Access:https://elibrary.ru/item.asp?id=37078096
http://www.mathnet.ru/php/archive.phtml?wshow=paper&jrnid=aa&paperid=1643&option_lang=rus
Format: Electronic Book Chapter
KOHA link:https://koha.lib.tpu.ru/cgi-bin/koha/opac-detail.pl?biblionumber=664671