Five-Body Integral Equations and Solution of the η−4Nη Problem

書誌詳細
Parent link:Few-Body Systems
Vol. 61, iss. 2.— 2020.— [18, 10 p.]
第一著者: Kolesnikov O. V. Oleg Valerjevich
団体著者: Национальный исследовательский Томский политехнический университет Исследовательская школа физики высокоэнергетических процессов
その他の著者: Fiks (Fix) A. I. Alexander Ivanovich
要約:Title screen
The Alt-Grassberger-Sandhas equations for the five-body problem are solved for the case of the driving two-body potentials limited to s-waves. The separable pole expansion method is employed to convert the equations into the effective quasi-two-body form. Numerical results are presented for five identical bosons as well as for the system containing an ηη-meson and four nucleons. Accuracy of the separable expansion is investigated. It is shown that both in (1+4)(1+4) and (2+3)(2+3) fragmentation, the corresponding eigenvalues decrease rather rapidly, what, combined with the alternation of their signs, leads to rather good convergence of the results. For the η−4Nη−4N system the crucial influence of the subthreshold behavior of the ηNηN amplitude on the ηη-nuclear low-energy interaction is discussed.
Режим доступа: по договору с организацией-держателем ресурса
出版事項: 2020
主題:
オンライン・アクセス:https://doi.org/10.1007/s00601-020-01551-7
フォーマット: 電子媒体 図書の章
KOHA link:https://koha.lib.tpu.ru/cgi-bin/koha/opac-detail.pl?biblionumber=664598