Физико-механические аспекты абразивного изнашивания сталей в условиях охлажденной воздушной среды

Bibliographic Details
Parent link:Обработка металлов (технология, оборудование, инструменты): научно-технический и производственный журнал.— , 1998-
Т. 21, № 1.— 2019.— [С. 108-121]
Main Author: Ан И-Кан
Corporate Authors: Национальный исследовательский Томский политехнический университет Школа базовой инженерной подготовки Отделение общетехнических дисциплин, Национальный исследовательский Томский политехнический университет Инженерная школа природных ресурсов Отделение нефтегазового дела
Other Authors: Вольф Э. Л. Эрнст Леонидович, Сараев Ю. Н. Юрий Николаевич
Summary:Заглавие с экрана
Введение. Актуальность рассмотренных в статье вопросов обусловлена стратегией освоения перспективных в экономическом отношении регионов России, для которых характерны суровые климатические условия. Это приводит прежде всего к неблагоприятному воздействию на материал деталей эксплуатируемой техники климатически низких температур. Выход из строя деталей, а нередко целых узлов бывает связан чаще всего с их износом, интенсивность которого, как правило, нарастает при воздействии отрицательных температур (к низкотемпературным принято относить процессы, протекающие при температурах ниже 273 К). Наиболее губительным в плане влияния на работоспособность этих элементов механических систем является их абразивное изнашивание. При этом практика эксплуатации техники в северных условиях показала, что интенсивность этого вида механического изнашивания деталей в узлах трения связана с неблагоприятным воздействием на физико-механические свойства, а значит, и на износостойкость сталей охлажденной воздушной среды. Поэтому изучение характера и причин поверхностного разрушения деталей, изготовленных из стальных материалов, представляет, как научный, так и сугубо практический интерес. Ферритоперлит является основой для широко применяемых сталей (сплавов), и в рассматриваемом контексте стал предметом настоящего исследования, цель которого: «Выявить закономерности абразивного низкотемпературного изнашивания отожженных углеродистых сталей для их использования при разработке научно обоснованных рекомендаций, необходимых при конструировании высокоизносостойкости металлических материалов».
Методы исследования. В научно-прикладном исследовании применялись как аналитические методы, так и экспериментальные износные испытания на установках оригинальных конструкций (защищены авторскими свидетельствами). В качестве расчетной модели для оценки траекторий и параметров скольжения абразивных зерен по рабочей поверхности ускорителя (ротора) использовалось понятие кинематической пары пятого класса (в качестве связи частицы с рабочей поверхностью в рассмотрение было введено понятие фрикционной связи по И.В. Крагельскому). Результаты и обсуждения. Обобщая полученные результаты, отметим следующее. Во-первых, экспериментально зафиксировано влияние схемы воздействия абразивных частиц в условиях низких температур на изнашиваемую поверхность образцов. За счет вогнутой (установка типа ЦУК) или выпуклой (способ кольца) формы изнашиваемой поверхности изменялась схема напряжений на разрушаемой поверхности образца. Отмеченное наглядно прослеживается на кривых износа в условиях охлажденной воздушной среды. Во-вторых, увеличение протяженности межфазовой некогерентной границы в системе α - твердый раствор - упрочняющая карбидная фаза (в отожженном состоянии испытывались углеродистые стали по составу от доэвтектоидных до заэвтектоидных) привело к росту абразивной износостойкости на всем интервале исследованных температур. Вместе с этим обозначенное имеет ряд особенностей, связанных с изменением механизма изнашивания при преодолении порога хладноломкости (от вязкого к хрупкому).
Introduction. The relevance of the issues discussed in the paper is due to the strategy of development of economically promising regions of Russia, which are characterized by severe climatic conditions. This leads primarily to adverse effects on the material parts of the equipment operated by climatically low temperatures. Failure of parts and often assemblies is most often associated with its wear, which intensity, as a rule, increases when exposed to negative temperatures (low-temperature processes are usually attributed to processes occurring at temperatures below 273 K). The most destructive, in terms of the impact on the performance of these elements of mechanical systems, is its abrasive wear. At the same time, the practice of operation of equipment in Northern conditions showed that the intensity of this type of mechanical wear of parts in friction units is associated with an adverse effect on the physical and mechanical properties, and hence on the wear resistance of cooled air steels. Therefore, the study of the nature and causes of surface destruction of parts made of steel materials is of both scientific and purely practical interest. Ferrite-perlite is the basis for widely used steels (alloys) and in this context has become the subject of this study, associated with the goal: “to identify patterns of low-temperature abrasive wear of annealed carbon steels for its use in the development of evidence-based recommendations required in the design of high-wear resistance of metal materials”. This was part 1 of the study.
Methods. In the scientific and applied research, both analytical methods and experimental wear tests on the installations of the original structures are used (protected by copyright certificates). The concept of kinematic pairs of the fifth class is used as a design model for the estimation of the trajectories and parameters of the sliding of the abrasive grains on the working surface of the accelerator (rotor). Results and discussion. Summarizing the results, it is necessary to note the following: First, the influence of the scheme of influence of abrasive particles on the wear surface of samples at low temperatures is experimentally recorded. Due to the concave (installation of the type of MCC) or convex (ring method) shape of the wear surface, the scheme of stresses on the destroyed surface of the sample is changed. This can be clearly seen on the wear curves in a cooled air. Secondly, the increase in the length of the interphase incoherent boundary in the system α-solid solution-hardening carbide phase (in the annealed state, carbon steels were tested in composition from pre-eutectoid to hypereutectoid) led to an increase in abrasive wear resistance over the entire range of the studied temperatures. At the same time, the indicated phenomenon has a number of features associated with a change in the wear mechanism when overcoming the threshold of cold fracture (from viscous to brittle).
Режим доступа: по договору с организацией-держателем ресурса
Published: 2019
Series:Материаловедение
Subjects:
Online Access:https://www.elibrary.ru/item.asp?id=37114066
https://doi.org/10.17212/1994-6309-2019-21.1-108-121
Format: Electronic Book Chapter
KOHA link:https://koha.lib.tpu.ru/cgi-bin/koha/opac-detail.pl?biblionumber=664583