The deposition of thin titanium-nitrogen coatings on the surface of PCL-basedscaffolds for vascular tissue engineering

Bibliographic Details
Parent link:Applied Physics Letters
Vol. 112, iss. 15.— 2018.— [153705, 5 p.]
Corporate Authors: Национальный исследовательский Томский политехнический университет Инженерная школа ядерных технологий Научно-образовательный центр Б. П. Вейнберга, Национальный исследовательский Томский политехнический университет Инженерная школа ядерных технологий Отделение ядерно-топливного цикла, Национальный исследовательский Томский политехнический университет Инженерная школа ядерных технологий Лаборатория плазменных гибридных систем
Other Authors: Kudryavtseva V. L. Valeriya Lvovna, Stankevich K. S. Ksenia Sergeevna, Kibler E. V. Elina Vitaljevna, Golovkin A. S. Aleksey Sergeevich, Mishanin A. I. Aleksandr Igorevich, Bolbasov E. N. Evgeny Nikolaevich, Choynzonov E. L. Evgeny Lkhamatsyrenovich, Tverdokhlebov S. I. Sergei Ivanovich
Summary:Title screen
Biodegradable polymer scaffolds for tissue engineering is a promising technology for therapies of patients suffering from the loss of tissue or its function including cardiac tissues. However, limitations such as hydrophobicity of polymers prevent cell attachment, cell conductivity, and endothelialization. Plasma modification of polymers allows producing materials for an impressive range of applications due to their unique properties. Here, we demonstrate the possibility of bioresorbable electrospun polycaprolacton (PCL) scaffold surface modification by reactive magnetron sputtering of the titanium target in a nitrogen atmosphere. The influence of the plasma treatment time on the structure and properties of electrospun PCL scaffolds was studied. We show that the plasma treatment does not change the physico-mechanical properties of electrospun PCL scaffolds, leads to an increase in PCL scaffold biocompatibility, and, simultaneously, increases their hydrophilicity. In conclusion, this modification method opens a route to producing scaffolds with enhanced biocompatibility for tissue engineered vascular grafts.
Режим доступа: по договору с организацией-держателем ресурса
Published: 2018
Subjects:
Online Access:https://doi.org/10.1063/1.5017580
Format: Electronic Book Chapter
KOHA link:https://koha.lib.tpu.ru/cgi-bin/koha/opac-detail.pl?biblionumber=664504