Plasmon-assisted click chemistry at low temperature: an inverse temperature effect on the reaction rate

Bibliographic Details
Parent link:Chemical Science
Vol. 12, iss. 15.— 2021.— [P. 5591-5598]
Corporate Author: Национальный исследовательский Томский политехнический университет Исследовательская школа химических и биомедицинских технологий
Other Authors: Guselnikova O. A. Olga Andreevna, Vana I. Irzhi, Phuong L. T. Linh Trinh, Panov I. L. Iljya Leonidovich, Rulishek L. Lyubomir, Trelin A. Andrey, Postnikov P. S. Pavel Sergeevich, Svorcik V. Vaclav, Andris E. Erik, Lyutakov O. Oleksy
Summary:Title screen
Plasmon assistance promotes a range of chemical transformations by decreasing their activation energies. In a common case, thermal and plasmon assistance work synergistically: higher temperature results in higher plasmon-enhanced catalysis efficiency. Herein, we report an unexpected tenfold increase in the reaction efficiency of surface plasmon-assisted Huisgen dipolar azide–alkyne cycloaddition (AAC) when the reaction mixture is cooled from room temperature to -35 °C. We attribute the observed increase in the reaction efficiency to complete plasmon-induced annihilation of the reaction barrier, prolongation of plasmon lifetime, and decreased relaxation of plasmon-excited-states under cooling. Furthermore, control quenching experiments supported by theoretical calculations indicate that plasmon-mediated substrate excitation to an electronic triplet state may play the key role in plasmon-assisted chemical transformation. Last but not least, we demonstrated the possible applicability of plasmon assistance to biological systems by AAC coupling of biotin to gold nanoparticles performed at -35 °C.
Published: 2021
Subjects:
Online Access:https://doi.org/10.1039/D0SC05898J
Format: Electronic Book Chapter
KOHA link:https://koha.lib.tpu.ru/cgi-bin/koha/opac-detail.pl?biblionumber=664485