Spectral stability estimates of Dirichlet divergence form elliptic operators

Bibliografiska uppgifter
Parent link:Analysis and Mathematical Physics
Vol. 10, iss. 4.— 2020.— [74, 25 p.]
Huvudupphovsman: Goldshtein V. M. Vladimir Mikhaylovich
Institutionell upphovsman: Национальный исследовательский Томский политехнический университет Школа базовой инженерной подготовки Отделение математики и информатики
Övriga upphovsmän: Pchelintsev V. A. Valery Anatoljevich, Ukhlov A. D. Alexander Dadar-oolovich
Sammanfattning:Title screen
We study spectral stability estimates of elliptic operators in divergence form −div[A(w)∇g(w)]−div[A(w)∇g(w)] with the Dirichlet boundary condition in non-Lipschitz domains Ω˜⊂CΩ~⊂C. The suggested method is based on the theory of quasiconformal mappings, weighted Sobolev spaces theory and its applications to the Poincaré inequalities.
Режим доступа: по договору с организацией-держателем ресурса
Publicerad: 2020
Ämnen:
Länkar:https://doi.org/10.1007/s13324-020-00425-9
Materialtyp: Elektronisk Bokavsnitt
KOHA link:https://koha.lib.tpu.ru/cgi-bin/koha/opac-detail.pl?biblionumber=663922
Beskrivning
Sammanfattning:Title screen
We study spectral stability estimates of elliptic operators in divergence form −div[A(w)∇g(w)]−div[A(w)∇g(w)] with the Dirichlet boundary condition in non-Lipschitz domains Ω˜⊂CΩ~⊂C. The suggested method is based on the theory of quasiconformal mappings, weighted Sobolev spaces theory and its applications to the Poincaré inequalities.
Режим доступа: по договору с организацией-держателем ресурса
DOI:10.1007/s13324-020-00425-9