Spectral stability estimates of Dirichlet divergence form elliptic operators
| Parent link: | Analysis and Mathematical Physics Vol. 10, iss. 4.— 2020.— [74, 25 p.] |
|---|---|
| Main Author: | |
| Corporate Author: | |
| Other Authors: | , |
| Summary: | Title screen We study spectral stability estimates of elliptic operators in divergence form −div[A(w)∇g(w)]−div[A(w)∇g(w)] with the Dirichlet boundary condition in non-Lipschitz domains Ω˜⊂CΩ~⊂C. The suggested method is based on the theory of quasiconformal mappings, weighted Sobolev spaces theory and its applications to the Poincaré inequalities. Режим доступа: по договору с организацией-держателем ресурса |
| Published: |
2020
|
| Subjects: | |
| Online Access: | https://doi.org/10.1007/s13324-020-00425-9 |
| Format: | Electronic Book Chapter |
| KOHA link: | https://koha.lib.tpu.ru/cgi-bin/koha/opac-detail.pl?biblionumber=663922 |