Space quasiconformal composition operators with applications to Neumann eigenvalues

Detaylı Bibliyografya
Parent link:Analysis and Mathematical Physics
Vol. 10, iss. 4.— 2020.— [78, 20 p.]
Müşterek Yazar: Национальный исследовательский Томский политехнический университет Школа базовой инженерной подготовки Отделение математики и информатики
Diğer Yazarlar: Goldshtein V. M. Vladimir Mikhaylovich, Hurri-Syrjanen R. Ritva, Pchelintsev V. A. Valery Anatoljevich, Ukhlov A. D. Alexander Dadar-oolovich
Özet:Title screen
In this article we obtain estimates of Neumann eigenvalues of p-Laplace operators in a large class of space domains satisfying quasihyperbolic boundary conditions. The suggested method is based on composition operators generated by quasiconformal mappings and their applications to Sobolev–Poincarй-inequalities. By using a sharp version of the reverse Hцlder inequality we refine our estimates for quasi-balls, that is, images of balls under quasiconformal mappings of the whole space.
Режим доступа: по договору с организацией-держателем ресурса
Baskı/Yayın Bilgisi: 2020
Konular:
Online Erişim:https://doi.org/10.1007/s13324-020-00420-0
Materyal Türü: Elektronik Kitap Bölümü
KOHA link:https://koha.lib.tpu.ru/cgi-bin/koha/opac-detail.pl?biblionumber=663920