Sobolev extension operators and Neumann eigenvalues
| Parent link: | Journal of Spectral Theory Vol. 10, iss. 1.— 2020.— [P. 337-353] |
|---|---|
| מחבר ראשי: | |
| מחבר תאגידי: | |
| מחברים אחרים: | , |
| סיכום: | Title screen In this paper we apply estimates of the norms of Sobolev extension operators to the spectral estimates of the first non-trivial Neumann eigenvalue of the Laplace operator in non-convex extension domains. As a consequence we obtain a connection between resonant frequencies of free membranes and the smallest-circle problem(initially proposed by J. J. Sylvester in 1857). Режим доступа: по договору с организацией-держателем ресурса |
| יצא לאור: |
2020
|
| נושאים: | |
| גישה מקוונת: | https://doi.org/10.4171/JST/295 |
| פורמט: | אלקטרוני Book Chapter |
| KOHA link: | https://koha.lib.tpu.ru/cgi-bin/koha/opac-detail.pl?biblionumber=663740 |
| סיכום: | Title screen In this paper we apply estimates of the norms of Sobolev extension operators to the spectral estimates of the first non-trivial Neumann eigenvalue of the Laplace operator in non-convex extension domains. As a consequence we obtain a connection between resonant frequencies of free membranes and the smallest-circle problem(initially proposed by J. J. Sylvester in 1857). Режим доступа: по договору с организацией-держателем ресурса |
|---|---|
| DOI: | 10.4171/JST/295 |