Sobolev extension operators and Neumann eigenvalues

מידע ביבליוגרפי
Parent link:Journal of Spectral Theory
Vol. 10, iss. 1.— 2020.— [P. 337-353]
מחבר ראשי: Goldshteyn V. M. Vladimir Mikhaylovich
מחבר תאגידי: Национальный исследовательский Томский политехнический университет Школа базовой инженерной подготовки Отделение математики и информатики
מחברים אחרים: Pchelintsev V. A. Valery Anatoljevich, Ukhlov A. D. Aleksandr Dadar-oolovich
סיכום:Title screen
In this paper we apply estimates of the norms of Sobolev extension operators to the spectral estimates of the first non-trivial Neumann eigenvalue of the Laplace operator in non-convex extension domains. As a consequence we obtain a connection between resonant frequencies of free membranes and the smallest-circle problem(initially proposed by J. J. Sylvester in 1857).
Режим доступа: по договору с организацией-держателем ресурса
יצא לאור: 2020
נושאים:
גישה מקוונת:https://doi.org/10.4171/JST/295
פורמט: אלקטרוני Book Chapter
KOHA link:https://koha.lib.tpu.ru/cgi-bin/koha/opac-detail.pl?biblionumber=663740
תיאור
סיכום:Title screen
In this paper we apply estimates of the norms of Sobolev extension operators to the spectral estimates of the first non-trivial Neumann eigenvalue of the Laplace operator in non-convex extension domains. As a consequence we obtain a connection between resonant frequencies of free membranes and the smallest-circle problem(initially proposed by J. J. Sylvester in 1857).
Режим доступа: по договору с организацией-держателем ресурса
DOI:10.4171/JST/295