Sobolev extension operators and Neumann eigenvalues
| Parent link: | Journal of Spectral Theory Vol. 10, iss. 1.— 2020.— [P. 337-353] |
|---|---|
| Main Author: | |
| Corporate Author: | |
| Other Authors: | , |
| Summary: | Title screen In this paper we apply estimates of the norms of Sobolev extension operators to the spectral estimates of the first non-trivial Neumann eigenvalue of the Laplace operator in non-convex extension domains. As a consequence we obtain a connection between resonant frequencies of free membranes and the smallest-circle problem(initially proposed by J. J. Sylvester in 1857). Режим доступа: по договору с организацией-держателем ресурса |
| Published: |
2020
|
| Subjects: | |
| Online Access: | https://doi.org/10.4171/JST/295 |
| Format: | Electronic Book Chapter |
| KOHA link: | https://koha.lib.tpu.ru/cgi-bin/koha/opac-detail.pl?biblionumber=663740 |