Non-asymptotic Confidence Estimation of the Autoregressive Parameter in AR(1) Process with an Unknown Noise Variance
| Parent link: | Austrian Journal of Statistics Vol. 49, № 4 : Special Issue CDAM 2019.— 2020.— [P. 19-26] |
|---|---|
| Hlavní autor: | |
| Korporativní autor: | |
| Další autoři: | |
| Shrnutí: | Title screen The paper considers the estimation problem of the autoregressive parameter in the first-order autoregressive process with Gaussian noises when the noise variance is unknown. We propose a non-asymptotic technique to compensate the unknown variance, and then, to construct a point estimator with any prescribed mean square accuracy. Also a fixed-width confidence interval with any prescribed coverage accuracy is proposed. The results of Monte-Carlo simulations are given. |
| Vydáno: |
2020
|
| Témata: | |
| On-line přístup: | https://doi.org/10.17713/ajs.v49i4.1121 |
| Médium: | Elektronický zdroj Kapitola |
| KOHA link: | https://koha.lib.tpu.ru/cgi-bin/koha/opac-detail.pl?biblionumber=663397 |